共查询到20条相似文献,搜索用时 0 毫秒
1.
Duchenne muscular dystrophy (DMD) is a genetically transmitted disease characterized by progressive muscle weakness and usually leads to death. DMD results from the absence, deficiency or dysfunction of the protein dystrophin. Analysis of protein data bases, including homology alignments and domain recognition patterns, have located highly significant correlations between dystrophin and other calcium regulating proteins. In particular, a major portion of the dystrophin sequence has been found to contain repeating units of approximately 100 amino acid residues. These repeating units were found to exhibit significant homology to troponin I. Troponin I has been found to bind to the calcium binding proteins calmodulin and troponin C. The regions of highest homology were characterized by patterns of high localization of charged amino acids and thus could represent a possible calmodulin or troponin C surface accessible binding site. Since subcellular localization studies have indicated that dystrophin is associated with the triadic junction, these findings imply that dystrophin could be involved in controlling intracellular calcium homeostasis.Special issue dedicated to Dr. Lawrence Austin. 相似文献
2.
De Moor O Dorgan CR Johnson PD Lambert AG Lecci C Maillol C Nugent G Poignant SD Price PD Pye RJ Storer R Tinsley JM Vickers R Well R Wilkes FJ Wilson FX Wren SP Wynne GM 《Bioorganic & medicinal chemistry letters》2011,21(16):4828-4831
Families of 2-arylbenzotriazoles and 2-arylindazoles that show positive effects in screens predictive of endogenous utrophin upregulation have been identified. Synthesis and structure-activity relationships are described leading to compounds with attractive in vitro profiles. 相似文献
3.
Cabrera PV Pang M Marshall JL Kung R Nelson SF Stalnaker SH Wells L Crosbie-Watson RH Baum LG 《The Journal of biological chemistry》2012,287(27):22759-22770
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. 相似文献
4.
5.
Borut Fonda Andrej Panjan Goran Markovic Nejc SarabonAuthor vitae 《Journal of electromyography and kinesiology》2011,21(5):854-860
The main aim of this project was to study muscle activity patterns during steep uphill cycling (UC) (i.e., with a gradient of 20%) with (1) normal saddle geometry and (2) with adjusted saddle position ASP (i.e., moving the saddle forward and changing the tilt of the saddle by 20%). Based on our preliminary case study, we hypothesized that: (1) during 20% UC muscle activity patterns would be different from those of level cycling (LC) and (2) during 20% UC with ASP muscle activity patterns would resemble those of LC. Twelve trained male cyclists were tested on an electromagnetically braked cycle ergometer under three conditions with the same work rate (80% of maximal power output) and cadence (90 rpm): level (LC), 20% UC and 20% UC with ASP. Electromyographic signals were acquired from m. tibialis anterior (TA), m. soleus (SO), m. gastrocnemius (GC), m. vastus lateralis (VL), m. vastus medialis (VM), m. rectus femoris (RF), m. biceps femoris (BF) and m. gluteus maximus (GM). Compared to LC, 20% UC significantly modified both the timing and the intensity of activity of the selected muscles, while muscles that cross the hip joint were the most affected (RF later onset, earlier offset, shorter range of activity and decrease in peak amplitude of 34%; BF longer range of activity; GM increase in peak amplitude of 44%). These changes in EMG patterns during 20% UC were successfully counteracted by the use of ASP and it was interesting to observe that the use of ASP during 20% UC was perceived positively by all cyclists regarding both comfort and performance. These results could have a practical relevance in terms of improving performance during UC, together with reducing discomfort. 相似文献
6.
Harmon EB Harmon ML Larsen TD Yang J Glasford JW Perryman MB 《The Journal of biological chemistry》2011,286(46):40296-40306
Myotonic dystrophy 1 (DM1) is a multisystemic disease caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the gene coding for myotonic dystrophy protein kinase (DMPK). DMPK is a nuclear envelope (NE) protein that promotes myogenic gene expression in skeletal myoblasts. Muscular dystrophy research has revealed the NE to be a key determinant of nuclear structure, gene regulation, and muscle function. To investigate the role of DMPK in NE stability, we analyzed DMPK expression in epithelial and myoblast cells. We found that DMPK localizes to the NE and coimmunoprecipitates with Lamin-A/C. Overexpression of DMPK in HeLa cells or C2C12 myoblasts disrupts Lamin-A/C and Lamin-B1 localization and causes nuclear fragmentation. Depletion of DMPK also disrupts NE lamina, showing that DMPK is required for NE stability. Our data demonstrate for the first time that DMPK is a critical component of the NE. These novel findings suggest that reduced DMPK may contribute to NE instability, a common mechanism of skeletal muscle wasting in muscular dystrophies. 相似文献
7.
Grisoni K Gieseler K Mariol MC Martin E Carre-Pierrat M Moulder G Barstead R Ségalat L 《Journal of molecular biology》2003,332(5):1037-1046
Syntrophins are a family of PDZ domain-containing adaptor proteins required for receptor localization. Syntrophins are also associated with the dystrophin complex in muscles. We report here the molecular and functional characterization of the Caenorhabditis elegans gene stn-1 (F30A10.8), which encodes a syntrophin with homology to vertebrate alpha and beta-syntrophins. stn-1 is expressed in neurons and in muscles of C.elegans. stn-1 mutants resemble dystrophin (dys-1) and dystrobrevin (dyb-1) mutants: they are hyperactive, bend their heads when they move forward, tend to hypercontract, and are hypersensitive to the acetylcholinesterase inhibitor aldicarb. These phenotypes are suppressed when stn-1 is expressed under the control of a muscular promoter, indicating that they are caused by the absence of stn-1 in muscles. These results suggest that the role of syntrophin is linked to dystrophin function in C.elegans. 相似文献
8.
Lance Wells 《The Journal of biological chemistry》2013,288(10):6930-6935
Several forms of congenital muscular dystrophy, referred to as dystroglycanopathies, result from defects in the protein O-mannosylation biosynthetic pathway. In this minireview, I discuss 12 proteins involved in the pathway and how they play a role in the building of glycan structures (most notably on the protein α-dystroglycan) that allow for binding to multiple proteins of the extracellular matrix. 相似文献
9.
10.
Spinal cord injury (SCI) is a neurological condition, for which no cure exists, typically leading to an immediate and irreversible loss of sensory and voluntary motor functions accompanied by significant health problems. We conducted proof-of-concept experiments aimed at assessing efficacy upon oral administration of a novel combination therapy for central pattern generator (CPG) activation and corresponding locomotor movement generation in completely paraplegic animals. Co-administration orally (by gavage) of buspirone, levodopa and carbidopa was found to dose-dependently induce episodes of steady weight-bearing stepping in low-thoracic (Th9/10) spinal cord-transected (Tx) mice (with no other form of assistance or training). Robust hindlimb stepping with weight-bearing capabilities was induced with the tri-therapy but not with clinically relevant doses of these compounds administered separately. These results provide evidence suggesting that this drug combination may be ideally suited to constitute a first-in-class therapy (CPG activator) for locomotor activity induction in chronic SCI individuals, given that efficacy was shown using commercially available brain-permeable small molecules, already known as safe for the treatment of various neurological indications. 相似文献
11.
C.I. Morse J. Smith A. Denny J. Tweedale N.D. Searle 《Journal of musculoskeletal & neuronal interactions》2015,15(2):154-160
Objectives:
To describe muscle size and architecture of the gastrocnemius medialis (GM) muscle in eleven adult males with Duchenne Muscular Dystrophy (DMD, age 24.5±5.4 years), and a control group of eleven males without DMD (CTRL, age 22.1±0.9 years).Methods:
GM anatomical cross sectional area (ACSA), volume (VOL), physiological cross sectional area (PCSA), fascicle length (Lf) and pennation angle (θ) were assessed using B-Mode Ultrasonography. GM ACSA was measured at 25, 50 and 75% of muscle length (Lm), from which VOL was calculated. At 50% of Lm, sagittal plane images were analysed to determine GM Lf and θ. GM PCSA was calculated as VOL/Lf. The ratio of Lf and Lm was also calculated.Results:
GM ACSA at 50% Lm, VOL and PCSA were smaller in DMD males compared to CTRL males by 36, 47 and 43%, respectively (P<0.01). There were no differences in Lf and θ. GM Lm was 29% shorter in DMD compared to CTRL. Lf/Lm was 29% longer in DMD (P<0.01).Conclusions:
Unlike previous data in children with DMD, our results show significant atrophy in adult males with DMD, and no change in Lf or θ. The shorter Lm may have implications for joint flexibility. 相似文献12.
Tachikawa M Kanagawa M Yu CC Kobayashi K Toda T 《The Journal of biological chemistry》2012,287(11):8398-8406
Fukuyama-type congenital muscular dystrophy (FCMD), the second most common childhood muscular dystrophy in Japan, is caused by alterations in the fukutin gene. Mutations in fukutin cause abnormal glycosylation of α-dystroglycan, a cell surface laminin receptor; however, the exact function and pathophysiological role of fukutin are unclear. Although the most prevalent mutation in Japan is a founder retrotransposal insertion, point mutations leading to abnormal glycosylation of α-dystroglycan have been reported, both in Japan and elsewhere. To understand better the molecular pathogenesis of fukutin-deficient muscular dystrophies, we constructed 13 disease-causing missense fukutin mutations and examined their pathological impact on cellular localization and α-dystroglycan glycosylation. When expressed in C2C12 myoblast cells, wild-type fukutin localizes to the Golgi apparatus, whereas the missense mutants A170E, H172R, H186R, and Y371C instead accumulated in the endoplasmic reticulum. Protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) also mislocalizes when co-expressed with these missense mutants. The results of nocodazole and brefeldin A experiments suggested that these mutant proteins were not transported to the Golgi via the anterograde pathway. Furthermore, we found that low temperature culture or curcumin treatment corrected the subcellular location of these missense mutants. Expression studies using fukutin-null mouse embryonic stem cells showed that the activity responsible for generating the laminin-binding glycan of α-dystroglycan was retained in these mutants. Together, our results suggest that some disease-causing missense mutations cause abnormal folding and localization of fukutin protein, and therefore we propose that folding amelioration directed at correcting the cellular localization may provide a therapeutic benefit to glycosylation-deficient muscular dystrophies. 相似文献
13.
Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3. 相似文献
14.
Natalia Ermolova Irina Kramerova Melissa J. Spencer 《The Journal of biological chemistry》2015,290(2):996-1004
Calpains are broadly distributed, calcium-dependent enzymes that induce limited proteolysis in a wide range of substrates. Mutations in the gene encoding the muscle-specific family member calpain 3 (CAPN3) underlie limb-girdle muscular dystrophy 2A. We have shown previously that CAPN3 knockout muscles exhibit attenuated calcium release, reduced calmodulin kinase (CaMKII) signaling, and impaired muscle adaptation to exercise. However, neither the precise role of CAPN3 in these processes nor the mechanisms of CAPN3 activation in vivo have been fully elucidated. In this study, we identify calmodulin (CaM), a known transducer of the calcium signal, as the first positive regulator of CAPN3 autolytic activity. CaM was shown to bind CAPN3 at two sites located in the C2L domain. Biochemical studies using muscle extracts from transgenic mice overexpressing CAPN3 or its inactive mutant revealed that CaM binding enhanced CAPN3 autolytic activation. Furthermore, CaM facilitated CAPN3-mediated cleavage of its in vivo substrate titin in tissue extracts. Therefore, these studies reveal a novel interaction between CAPN3 and CaM and identify CaM as the first positive regulator of CAPN3 activity. 相似文献
15.
Leona D. Tooley Laura K. Zamurs Nicola Beecher Naomi L. Baker Rachel A. Peat Naomi E. Adams John F. Bateman Kathryn N. North Clair Baldock Shireen R. Lamandé 《The Journal of biological chemistry》2010,285(43):33567-33576
Collagen VI is an extracellular protein that most often contains the three genetically distinct polypeptide chains, α1(VI), α2(VI), and α3(VI), although three recently identified chains, α4(VI), α5(VI), and α6(VI), may replace α3(VI) in some situations. Each chain has a triple helix flanked by N- and C-terminal globular domains that share homology with the von Willebrand factor type A (VWA) domains. During biosynthesis, the three chains come together to form triple helical monomers, which then assemble into dimers and tetramers. Tetramers are secreted from the cell and align end-to-end to form microfibrils. The precise molecular mechanisms responsible for assembly are unclear. Mutations in the three collagen VI genes can disrupt collagen VI biosynthesis and matrix organization and are the cause of the inherited disorders Bethlem myopathy and Ullrich congenital muscular dystrophy. We have identified a Ullrich congenital muscular dystrophy patient with compound heterozygous mutations in α2(VI). The first mutation causes skipping of exon 24, and the mRNA is degraded by nonsense-mediated decay. The second mutation is a two-amino acid deletion in the C1 VWA domain. Recombinant C1 domains containing the deletion are insoluble and retained intracellularly, indicating that the mutation has detrimental effects on domain folding and structure. Despite this, mutant α2(VI) chains retain the ability to associate into monomers, dimers, and tetramers. However, we show that secreted mutant tetramers containing structurally abnormal C1 VWA domains are unable to associate further into microfibrils, directly demonstrating the critical importance of a correctly folded α2(VI) C1 domain in microfibril formation. 相似文献
16.
The purpose of this study was to determine any potential falls-resistance benefits that might arise from treadmill-slip-perturbation training. One hundred sixty-six healthy community-dwelling older adults were randomly assigned to either the treadmill-slip-training group (Tt) or the treadmill-control group (Tc). Tt received 40 slip-like perturbations during treadmill walking. Tc received unperturbed treadmill walking for 30 min. Following their treadmill session, both groups were exposed to a novel slip during over-ground walking. Their responses to this novel slip were also compared to previously collected data from participants who received either over-ground-slip training (Ot) with 24 slips or over-ground walking (Oc) with no training before experiencing their novel over-ground slip. Fall rates and both proactive (pre-slip) and reactive (post-slip) stability were assessed and compared for the novel over-ground slip in groups Tt, Tc, and Oc, as well as for the 24th slip in Ot. Results showed Tt had fewer falls than Tc (9.6% versus 43.8%, p < 0.001) but more falls than Ot (9.6% versus 0%, p < 0.001). Tt also had greater proactive and reactive stability than Tc (Tt > Tc, p < 0.01), however, Tt’s stabilities were lower than those of Ot (p < 0.01). There was no difference in fall-rate or reactive stability between Tc and Oc, though treadmill walking did improve the proactive stability control of the latter. While the treadmill-slip-training protocol could immediately reduce the numbers of falls from a novel laboratory-reproduced slip, such improvements were far less than that from the motor adaptation to the over-ground-slip-training protocol. 相似文献
17.
18.
Yasuko Ono Koichi Ojima Fukuyo Torii Emi Takaya Naoko Doi Kazuhiro Nakagawa Shoji Hata Keiko Abe Hiroyuki Sorimachi 《The Journal of biological chemistry》2010,285(30):22986-22998
Because intracellular [Na+] is kept low by Na+/K+-ATPase, Na+ dependence is generally considered a property of extracellular enzymes. However, we found that p94/calpain 3, a skeletal-muscle-specific member of the Ca2+-activated intracellular “modulator proteases” that is responsible for a limb-girdle muscular dystrophy (“calpainopathy”), underwent Na+-dependent, but not Cs+-dependent, autolysis in the absence of Ca2+. Furthermore, Na+ and Ca2+ complementarily activated autolysis of p94 at physiological concentrations. By blocking Na+/K+-ATPase, we confirmed intracellular autolysis of p94 in cultured cells. This was further confirmed using inactive p94:C129S knock-in (p94CS-KI) mice as negative controls. Mutagenesis studies showed that much of the p94 molecule contributed to its Na+/Ca2+-dependent autolysis, which is consistent with the scattered location of calpainopathy-associated mutations, and that a conserved Ca2+-binding sequence in the protease acted as a Na+ sensor. Proteomic analyses using Cs+/Mg2+ and p94CS-KI mice as negative controls revealed that Na+ and Ca2+ direct p94 to proteolyze different substrates. We propose three roles for Na+ dependence of p94; 1) to increase sensitivity of p94 to changes in physiological [Ca2+], 2) to regulate substrate specificity of p94, and 3) to regulate contribution of p94 as a structural component in muscle cells. Finally, this is the first example of an intracellular Na+-dependent enzyme. 相似文献
19.
Sung-Chan Park Jun-Nam Ryu Se-Jung Oh Yong-Jun Cha 《Journal of musculoskeletal & neuronal interactions》2021,21(1):51
Objective:To investigate the effects of non-paralytic dorsiflexion muscle strengthening exercise on functional abilities in chronic hemiplegic patients after stroke.Methods:A total of 21 patients with chronic stroke underwent dorsiflexion muscle strengthening exercise (MST) 5 times a week for 6 weeks (the experimental group, MST to non-paralytic dorsiflexion muscles, n=11; the control group, MST to paralytic dorsiflexion muscles; n=10). Paralytic dorsiflexor muscle activities (DFA) and 10 m walking tests (10MWT) and timed up and go tests (TUG) were measured before and after intervention.Results:A significant increase in DFA was observed after intervention in the experimental and control groups (p<0.05) (experimental 886.6% for reference voluntary contraction (RVC), control 931.6% for RVC). TUG and 10MWT results showed significant reductions post-intervention in the experimental and control groups (experimental group -5.6 sec, control -4.8 sec; experimental group -3.1 sec, control, -3.9 sec; respectively). No significant intergroup difference was observed between changes in DFA or between changes in TUG and 10MWT results after intervention (p>.05).Conclusion:Strengthening exercise performed on non-paralytic dorsiflexion muscles had positive cross-training effects on paralytic dorsiflexor muscle activities, balance abilities, and walking abilities in patients with chronic stroke. 相似文献