首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.  相似文献   

3.
Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.  相似文献   

4.
5.
Polyploidy events (polyploidization) followed by progressive loss of redundant genome components are a major feature of plant evolution, with new evidence suggesting that all flowering plants possess ancestral genome duplications. Furthermore, many of our most important crop plants have undergone additional, relatively recent, genome duplication events. Recent advances in DNA sequencing have made vast amounts of new genomic data available for many plants, including a range of important crop species with highly duplicated genomes. Along with assisting traditional forward genetics approaches to study gene function, this wealth of new sequence data facilitates extensive reverse genetics-based functional analyses. However, plants featuring high levels of genome duplication as a result of recent polyploidization pose additional challenges for reverse genetic analysis. Here we review reverse genetic analysis in such polyploid plants and highlight key challenges.  相似文献   

6.
Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress.  相似文献   

7.
Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole‐genome shotgun sequencing of the nuclear genome of flax. Seven paired‐end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep‐coverage (approximately 94× raw, approximately 69× filtered) short‐sequence reads (44–100 bp), produced a set of scaffolds with N50 = 694 kb, including contigs with N50 = 20.1 kb. The contig assembly contained 302 Mb of non‐redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole‐genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis‐assembly of regions at the genome scale. A total of 43 384 protein‐coding genes were predicted in the whole‐genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (Ks) observed within duplicate gene pairs was consistent with a recent (5–9 MYA) whole‐genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam‐A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole‐genome shotgun short‐sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.  相似文献   

8.
? Premise of the study: Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. ? Methods: Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). ? Key results: Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. ? Conclusions: Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.  相似文献   

9.
Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics – the marriage of cytology and genomics – will make a significant contribution to the field of plant genetics.  相似文献   

10.

Background

Generation of long (>5 Kb) DNA sequencing reads provides an approach for interrogation of complex regions in the human genome. Currently, large-insert whole genome sequencing (WGS) technologies from Pacific Biosciences (PacBio) enable analysis of chromosomal structural variations (SVs), but the cost to achieve the required sequence coverage across the entire human genome is high.

Results

We developed a method (termed PacBio-LITS) that combines oligonucleotide-based DNA target-capture enrichment technologies with PacBio large-insert library preparation to facilitate SV studies at specific chromosomal regions. PacBio-LITS provides deep sequence coverage at the specified sites at substantially reduced cost compared with PacBio WGS. The efficacy of PacBio-LITS is illustrated by delineating the breakpoint junctions of low copy repeat (LCR)-associated complex structural rearrangements on chr17p11.2 in patients diagnosed with Potocki–Lupski syndrome (PTLS; MIM#610883). We successfully identified previously determined breakpoint junctions in three PTLS cases, and also were able to discover novel junctions in repetitive sequences, including LCR-mediated breakpoints. The new information has enabled us to propose mechanisms for formation of these structural variants.

Conclusions

The new method leverages the cost efficiency of targeted capture-sequencing as well as the mappability and scaffolding capabilities of long sequencing reads generated by the PacBio platform. It is therefore suitable for studying complex SVs, especially those involving LCRs, inversions, and the generation of chimeric Alu elements at the breakpoints. Other genomic research applications, such as haplotype phasing and small insertion and deletion validation could also benefit from this technology.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1370-2) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA).

Results

A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance and representation of the genome.

Conclusions

The iMDA protocol in combination with DNA-free laboratory consumables, significantly improved the ability to sequence specimens with low levels of DNA. iMDA has broad utility in metagenomics, diagnostics, ancient DNA analysis, pre-implantation embryo screening, single-cell genomics, whole genome sequencing of unculturable organisms, and forensic applications for both human and microbial targets.  相似文献   

12.
13.
Massively parallel sequencing a small proportion of the whole genome at high coverage enables answering a wide range of questions from molecular evolution and evolutionary biology to animal and plant breeding and forensics. In this study, we describe the development of restriction‐site associated DNA (RAD) sequencing approach for Ion Torrent PGM platform. Our protocol results in extreme genome complexity reduction using two rare‐cutting restriction enzymes and strict size selection of the library allowing sequencing of a relatively small number of genomic fragments with high sequencing depth. We applied this approach to a common freshwater fish species, the Eurasian perch (Perca fluviatilis L.), and generated over 2.2 MB of novel sequence data consisting of ~17 000 contigs, identified 1259 single nucleotide polymorphisms (SNPs). We also estimated genetic differentiation between the DNA pools from freshwater (Lake Peipus) and brackish water (the Baltic Sea) populations and identified SNPs with the strongest signal of differentiation that could be used for robust individual assignment in the future. This work represents an important step towards developing genomic resources and genetic tools for the Eurasian perch. We expect that our ddRAD sequencing protocol for semiconductor sequencing technology will be useful alternative for currently available RAD protocols.  相似文献   

14.
Ancient genomics     
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field''s focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.  相似文献   

15.
Type specimens have high scientific importance because they provide the only certain connection between the application of a Linnean name and a physical specimen. Many other individuals may have been identified as a particular species, but their linkage to the taxon concept is inferential. Because type specimens are often more than a century old and have experienced conditions unfavourable for DNA preservation, success in sequence recovery has been uncertain. This study addresses this challenge by employing next‐generation sequencing (NGS) to recover sequences for the barcode region of the cytochrome c oxidase 1 gene from small amounts of template DNA. DNA quality was first screened in more than 1800 century‐old type specimens of Lepidoptera by attempting to recover 164‐bp and 94‐bp reads via Sanger sequencing. This analysis permitted the assignment of each specimen to one of three DNA quality categories – high (164‐bp sequence), medium (94‐bp sequence) or low (no sequence). Ten specimens from each category were subsequently analysed via a PCR‐based NGS protocol requiring very little template DNA. It recovered sequence information from all specimens with average read lengths ranging from 458 bp to 610 bp for the three DNA categories. By sequencing ten specimens in each NGS run, costs were similar to Sanger analysis. Future increases in the number of specimens processed in each run promise substantial reductions in cost, making it possible to anticipate a future where barcode sequences are available from most type specimens.  相似文献   

16.
17.
18.
新一代测序技术(NGS)的文库制备方法在基因组的拼装中起着重要作用。但是NGS技术制备的普通DNA文库片段只有500 bp左右,难以满足复杂基因组的从头(de novo)拼装要求。三代测序技术的读长可以达到20 kb,但是其高错误率及测序成本过高使得其又不易推广。因此二代测序的Mate-paired文库制备技术一直在基因组的de novo拼装中扮演着非常重要的角色。目前主流的NGS平台Illumina制备的Mate-paired文库的片段范围只有2~5 kb,为了得到更长的可用于Illumina平台测序的Mate-paired文库,本研究首次整合并优化了Illumina和Roche/454两种测序平台的Mate-paired文库制备技术,采用诱导环化酶来提高基因组长片段DNA的环化效率,成功建立了20 kb Mate-paired文库制备技术,并已将该技术应用于人类基因组20 kb Mate-paired文库制备。该技术为Illumina平台制备长片段Mate-paired库提供了方法指导。  相似文献   

19.
Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host–microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >105-fold amplification of the target genomes with <6.7-fold amplification of the background. SWGA-treated genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2–9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs.  相似文献   

20.
? Premise of the study: Genome survey sequences (GSS) from massively parallel sequencing have potential to provide large, cost-effective data sets for phylogenetic inference, replace single gene or spacer regions as DNA barcodes, and provide a plethora of data for other comparative molecular evolution studies. Here we report on the application of this method to estimating the molecular phylogeny of core Asparagales, investigating plastid gene losses, assembling complete plastid genomes, and determining the type and quality of assembled genomic data attainable from Illumina 80-120-bp reads. ? Methods: We sequenced total genomic DNA from samples in two lineages of monocotyledonous plants, Poaceae and Asparagales, on the Illumina platform in a multiplex arrangement. We compared reference-based assemblies to de novo contigs, evaluated consistency of assemblies resulting from use of various references sequences, and assessed our methods to obtain sequence assemblies in nonmodel taxa. ? Key results: Our method returned reliable, robust organellar and nrDNA sequences in a variety of plant lineages. High quality assemblies are not dependent on genome size, amount of plastid present in the total genomic DNA template, or relatedness of available reference sequences for assembly. Phylogenetic results revealed familial and subfamilial relationships within Asparagales with high bootstrap support, although placement of the monotypic genus Aphyllanthes was placed with moderate confidence. ? Conclusions: The well-supported molecular phylogeny provides evidence for delineation of subfamilies within core Asparagales. With advances in technology and bioinformatics tools, the use of massively parallel sequencing will continue to become easier and more affordable for phylogenomic and molecular evolutionary biology investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号