首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To address the need for a bright, photostable labeling tool that allows long-term in vivo imaging in whole organisms, we recently introduced second harmonic generating (SHG) nanoprobes. Here we present a protocol for the preparation and use of a particular SHG nanoprobe label, barium titanate (BT), for in vivo imaging in living zebrafish embryos. Chemical treatment of the BT nanoparticles results in surface coating with amine-terminal groups, which act as a platform for a variety of chemical modifications for biological applications. Here we describe cross-linking of BT to a biotin-linked moiety using click chemistry methods and coating of BT with nonreactive poly(ethylene glycol) (PEG). We also provide details for injecting PEG-coated SHG nanoprobes into zygote-stage zebrafish embryos, and in vivo imaging of SHG nanoprobes during gastrulation and segmentation. Implementing the PROCEDURE requires a basic understanding of laser-scanning microscopy, experience with handling zebrafish embryos and chemistry laboratory experience. Functionalization of the SHG nanoprobes takes ~3 d, whereas zebrafish preparation, injection and imaging setup should take approximately 2-4 h.  相似文献   

2.
The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ∼50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells.  相似文献   

3.
Amyloid‐like peptides are an ideal model for the mechanistic study of amyloidosis, which may lead to many human diseases, such as Alzheimer disease. This study reports a strong second harmonic generation (SHG) effect of amyloid‐like peptides, having a signal equivalent to or even higher than those of endogenous collagen fibers. Several amyloid‐like peptides (both synthetic and natural) were examined under SHG microscopy and shown they are SHG‐active. These peptides can also be observed inside cells (in vitro). This interesting property can make these amyloid‐like peptides second harmonic probes for bioimaging applications. Furthermore, SHG microscopy can provide a simple and label‐free approach to detect amyloidosis. Lattice corneal dystrophy was chosen as a model disease of amyloidosis. Morphological difference between normal and diseased human corneal biopsy samples can be easily recognized, proving that SHG can be a useful tool for disease diagnosis.  相似文献   

4.
目的:用二次谐波成像结合双光子荧光成像的方法观察人源胶原蛋白透皮吸收的情况。方法:将荧光标记的人源胶原蛋白(1 mg/mL)涂抹于小鼠表皮层经皮肤吸收1 h后用背向二次谐波观察皮肤内胶原纤维作为真皮层定位标志,用双光子扫描共聚焦显微镜观察人源胶原蛋白透皮吸收深度,吸收方式。结果:二次谐波成像结合双光子荧光成像表明人源胶原蛋白透皮吸收1 h后可观察到荧光信号沿着毛囊聚集,并有部分荧光分子由毛囊扩散至真皮层。结论:二次谐波可以更快速,更灵敏地检测皮肤中的胶原纤维,以此作为检测物质透皮吸收深度的定位标志,具有不受荧光信号干扰的优点。人源胶原蛋白可以沿着毛囊进入真皮层,并从毛囊中扩散至胶原纤维层从而补充皮肤中的胶原纤维。  相似文献   

5.
In articular hyaline cartilage, chondrocytes are surrounded by an extracellular matrix which is mainly composed by collagen and proteoglycanes. Pathological specimens show a partial or complete degradation of this matrix. Therefore, it could be interesting to know how mechanical or biochemical constraints applied to cartilage specimens induce modifications of the cartilage network. Multiphoton technology combined to Second Harmonic Generation (SHG) enables to image cartilage specimens in a non-invasive mode with high resolution at deep penetration. By placing a band pass filter in front of the transmitted light detector, SHG signal with frequency doubled can be isolated for a new contrast imaging. SHG (second harmonic generation) is a diffusion process generated from organized structures and does not need any fluorescent staining. Due to their non-centrosymetric structure, collagen fibrilles present a high second-order non-linear susceptibility and thus give rise to a strong SHG signal when exposed to high enough electric fields produced by a focal point of a femtosecond pulsed laser (multiphoton microscopy). As the extracellular matrix of cartilage is in part constituted by collagen fibers, it can be imaged with this contrast tool. The intensity of SHG signals strongly depends on the organization of collagen fibers. Thus a modification of the extracellular matrix in terms of 3D-organization of collagen induced by mechanical stress can be shown with this contrast tool.  相似文献   

6.
We show that structural protein arrays consisting largely of collagen, myosin, and tubulin, and their associated proteins can be imaged in three dimensions with high contrast and resolution by laser-scanning second harmonic generation (SHG) microscopy. SHG is a nonlinear optical scheme and this form of microscopy shares several common advantages with multiphoton excited fluorescence, namely, intrinsic three-dimensionality and reduced out-of-plane photobleaching and phototoxicity. SHG does not arise from absorption and in-plane photodamage considerations are therefore also greatly reduced. In particular, structural protein arrays that are highly ordered and birefringent produce large SHG signals without the need for any exogenous labels. We demonstrate that thick tissues including muscle and bone can be imaged and sectioned through several hundred micrometers of depth. Combining SHG with two-photon excited green fluorescent protein (GFP) imaging allows inference of the molecular origin of the SHG contrast in Caenorhabditis elegans sarcomeres. Symmetry and organization of microtubule structures in dividing C. elegans embryos are similarly studied by comparing the endogenous tubulin contrast with that of GFP::tubulin fluorescence. It is found that SHG provides molecular level data on radial and lateral symmetries that GFP constructs cannot. The physical basis of SHG is discussed and compared with that of two-photon excitation as well as that of polarization microscopy. Due to the intrinsic sectioning, lack of photobleaching, and availability of molecular level data, SHG is a powerful tool for in vivo imaging.  相似文献   

7.
To improve the quality of fluorescent voltage-sensitive probes twenty new styryl dyes were synthesized. Some of the new probes are significantly better than any used in the past. A signal-to-noise ratio of 90 root mean square (rms) noise was obtained for an optical recording of action potentials from neuroblastoma cells maintained in monolayer culture. The fluorescence fractional change of the optical signal is as large as 14%/100 mV. Photodynamic damage and bleaching are much less significant with the new probes. These fluorescent probes can be used to measure small and rapid changes in membrane potential from single cells maintained in monolayer cultures, from single cells in invertebrate ganglia, from their arborization, and from other preparations. The optical measurement can be made with a standard fluorescent microscope equipped with DC mercury illumination. Guidelines for the design of even better fluorescent probes and more efficient instruments are suggested.  相似文献   

8.
Electrophysiology of the nematode Caenorhabditis elegans has the potential to bridge the wealth of information on the molecular biology and anatomy of this organism with the responses of selected cells and cellular neural networks associated with a behavioral response. In this paper we report that the nonlinear optical phenomenon of second harmonic generation (SHG) can be detected using green fluorescent protein (GFP) chimeras expressed in selected cells of living animals. Alterations in the SHG signal as a result of receptor ligand interactions and mechanical stimulation of the mechanosensory cells indicate that this signal is very sensitive to membrane potential. The results suggest that this approach to membrane potential measurements in C. elegans and in other biological systems could effectively couple data on selective locations within specific cells with functional responses that are associated with behavioral and sensory processes.  相似文献   

9.
Multiphoton microscopy of intrinsic fluorescence and second harmonic generation (SHG) of whole mouse organs is made possible by optically clearing the organ before imaging.1,2 However, for organs that contain fluorescent proteins such as GFP and YFP, optical clearing protocols that use methanol dehydration and clear using benzyl alcohol:benzyl benzoate (BABB) while unprotected from light3 do not preserve the fluorescent signal. The protocol presented here is a novel way in which to perform whole organ optical clearing on mouse brain while preserving the fluorescence signal of YFP expressed in neurons. Altering the optical clearing protocol such that the organ is dehydrated using an ethanol graded series has been found to reduce the damage to the fluorescent proteins and preserve their fluorescent signal for multiphoton imaging.4 Using an optimized method of optical clearing with ethanol-based dehydration and clearing by BABB while shielded from light, we show high-resolution multiphoton images of yellow fluorescent protein (YFP) expression in the neurons of a mouse brain more than 2 mm beneath the tissue surface.  相似文献   

10.
Fluorescence-guided imaging during surgery is a promising technique that is increasingly used to aid surgeons in identifying sites of tumor and surgical margins. Of the two types of fluorescent probes, always-on and activatable, activatable probes are preferred because they produce higher target-to-background ratios, thus improving sensitivity compared with always-on probes that must contend with considerable background signal. There are two types of activatable probes: 1) enzyme-reactive probes that are normally quenched but can be activated after cleavage by cancer-specific enzymes (activity-based probes) and 2) molecular-binding probes which use cancer targeting moieties such as monoclonal antibodies to target receptors found in abundance on cancers and are activated after internalization and lysosomal processing (binding-based probes). For fluorescence-guided intraoperative surgery, enzyme-reactive probes are superior because they can react quickly, require smaller dosages especially for topical applications, have limited side effects, and have favorable pharmacokinetics. Enzyme-reactive probes are easier to use, fit better into existing work flows in the operating room and have minimal toxicity. Although difficult to prove, it is assumed that the guidance provided to surgeons by these probes results in more effective surgeries with better outcomes for patients. In this review, we compare these two types of activatable fluorescent probes for their ease of use and efficacy.  相似文献   

11.
生物活组织的背向二次谐波成像   总被引:5,自引:0,他引:5  
光学二次谐波成像技术由于具有三维高分辨率、不需要荧光标记、对生物样品的杀伤效应小等特点,在生物医学研究上具有广阔的应用前景.在双光子荧光成像基础上,实现了适合对厚组织样品观测的背向光学二次谐波成像,探讨了背向二次谐波成像的特点和影响因素.通过对多种生物组织样品进行大量实验,发现胶原纤维和肌肉纤维均可以产生很强的背向二次谐波,并成功地将背向二次谐波成像技术应用于糖尿病患者皮肤的观测.背向二次谐波成像技术可望推广到病理检查等临床应用中.  相似文献   

12.
Localization‐based super‐resolution microscopy relies on the detection of individual molecules cycling between fluorescent and non‐fluorescent states. These transitions are commonly regulated by high‐intensity illumination, imposing constrains to imaging hardware and producing sample photodamage. Here, we propose single‐molecule self‐quenching as a mechanism to generate spontaneous photoswitching. To demonstrate this principle, we developed a new class of DNA‐based open‐source super‐resolution probes named super‐beacons, with photoswitching kinetics that can be tuned structurally, thermally and chemically. The potential of these probes for live‐cell compatible super‐resolution microscopy without high‐illumination or toxic imaging buffers is revealed by imaging interferon inducible transmembrane proteins (IFITMs) at sub‐100 nm resolutions.  相似文献   

13.
PROBER is an oligonucleotide primer design software application that designs multiple primer pairs for generating PCR probes useful for fluorescence in situ hybridization (FISH). PROBER generates Tiling Oligonucleotide Probes (TOPs) by masking repetitive genomic sequences and delineating essentially unique regions that can be amplified to yield small (100-2000 bp) DNA probes that in aggregate will generate a single, strong fluorescent signal for regions as small as a single gene. TOPs are an alternative to bacterial artificial chromosomes (BACs) that are commonly used for FISH but may be unstable, unavailable, chimeric, or non-specific to small (10-100 kb) genomic regions. PROBER can be applied to any genomic locus, with the limitation that the locus must contain at least 10 kb of essentially unique blocks. To test the software, we designed a number of probes for genomic amplifications and hemizygous deletions that were initially detected by Representational Oligonucleotide Microarray Analysis of breast cancer tumors. AVAILABILITY: http://prober.cshl.edu  相似文献   

14.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
One principal advantage of multiphoton excitation microscopy is that it preserves its three-dimensional micrometer resolution when imaging inside light-scattering samples. For that reason two-photon-excited fluorescence microscopy has become an invaluable tool for cellular imaging in intact tissue, with applications in many fields of physiology. This success has driven increasing interest in other forms of nonlinear microscopy that can provide additional information on cells and tissues, such as second- (SHG) and third- (THG) harmonic generation microscopies. In recent years, significant progress has been made in understanding the contrast mechanisms of these recent methodologies, and high-resolution imaging based on intrinsic sources of signal has been demonstrated in cells and tissues. Harmonic generation exhibits structural rather than chemical specificity and can be obtained from a variety of non-fluorescent samples. SHG is observed specifically in dense, non-centrosymmetric arrangements of polarizable molecules, such as collagen fibrils, myofilaments, and polarized microtubule bundles. SHG imaging is therefore emerging as a novel approach for studying processes such as the physiopathological remodelling of the collagen matrix and myofibrillogenesis in intact tissue. THG does not require a non-centrosymmetric system ; however no signal can be obtained from a homogeneous medium. THG imaging therefore provides maps of sub-micrometer heterogeneities (interfaces, inclusions) in unstained samples, and can be used as a general purpose structural imaging tool. Recent studies showed that this technique can be used to image embryo development in small organisms and to characterize the accumulation of large lipid bodies in specialized cells. SHG and THG microscopy both rely on femtosecond laser technology and are easily combined with two-photon microscopy.  相似文献   

16.
We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)—nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices.  相似文献   

17.
Successful development of ultra-sensitive molecular imaging nanoprobes for the detection of targeted biological objects is a challenging task. Although magnetic nanoprobes have the potential to perform such a role, the results from probes that are currently available have been far from optimal. Here we used artificial engineering approaches to develop innovative magnetic nanoprobes, through a process that involved the systematic evaluation of the magnetic spin, size and type of spinel metal ferrites. These magnetism-engineered iron oxide (MEIO) nanoprobes, when conjugated with antibodies, showed enhanced magnetic resonance imaging (MRI) sensitivity for the detection of cancer markers compared with probes currently available. Also, we successfully visualized small tumors implanted in a mouse. Such high-performance, nanotechnology-based molecular probes could enhance the ability to visualize other biological events critical to diagnostics and therapeutics.  相似文献   

18.
We have generated a series of quenched near-infrared fluorescent activity-based probes (qNIRF-ABPs) that covalently target the papain-family cysteine proteases shown previously to be important in multiple stages of tumorigenesis. These 'smart' probes emit a fluorescent signal only after covalently modifying a specific protease target. After intravenous injection of NIRF-ABPs into mice bearing grafted tumors, noninvasive, whole-body imaging allowed direct monitoring of cathepsin activity. Importantly, the permanent nature of the probes also allowed secondary, ex vivo biochemical profiling to identify specific proteases and to correlate their activity with whole-body images. Finally, we demonstrate that these probes can be used to monitor small-molecule inhibition of protease targets both biochemically and by direct imaging methods. Thus, NIRF-ABPs are (i) potentially valuable new imaging agents for disease diagnosis and (ii) powerful tools for preclinical and clinical testing of small-molecule therapeutic agents in vivo.  相似文献   

19.
The purpose of this study was to image and quantify the structural changes of corneal edema by second harmonic generation (SHG) microscopy. Bovine cornea was used as an experimental model to characterize structural alterations in edematous corneas. Forward SHG and backward SHG signals were simultaneously collected from normal and edematous bovine corneas to reveal the morphological differences between them. In edematous cornea, both an uneven expansion in the lamellar interspacing and an increased lamellar thickness in the posterior stroma (depth > 200 μm) were identified, whereas the anterior stroma, composed of interwoven collagen architecture, remained unaffected. Our findings of heterogeneous structural alteration at the microscopic scale in edematous corneas suggest that the strength of collagen cross-linking is heterogeneous in the corneal stroma. In addition, we found that qualitative backward SHG collagen fiber imaging and depth-dependent signal decay can be used to detect and diagnose corneal edema. Our work demonstrates that SHG imaging can provide morphological information for the investigation of corneal edema biophysics, and may be applied in the evaluation of advancing corneal edema in vivo.  相似文献   

20.
In this work, we present a non‐invasive approach to determine azimuth and elevation angles of collagen fibers capable of generating second harmonic signal. The azimuth angle was determined using the minimum of second harmonic generation (SHG) signal while rotating the plane of polarization of excitation light. The elevation angle was estimated from the ratio of the minimal SHG intensity to the intensity when laser polarization and fiber directions were parallel to each other using experimentally determined calibration curve. Pixel‐resolution images of collagen fiber spatial orientation in tendon from bovine leg, chicken leg, and chicken skin were acquired using our approach of SHG polarization‐resolved microscopy. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号