首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adiponectin is one of the most important, recently discovered adipocytokines that acts at various levels to control male and female fertility through central effects on the hypothalamus-pituitary axis or through peripheral effects on the ovary, uterus, and embryo. We studied simultaneous changes in the gene expression pattern of adiponectin and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) in granulosa and theca cells, cumulus-oocyte complex, and in corpus luteum in healthy bovine (Bos tarus) follicles at different stages of development. The expression levels of adiponectin, AdipoR1, and AdipoR2 mRNA were lower (P < 0.05) in granulosa and cumulus cells in comparison with that in theca cells and oocyte. In contrast with the oocyte, AdipoR1 in granulosa, theca, and luteal cells was expressed (P < 0.05) more than AdipoR2. Adiponectin expression increased (P < 0.05) in granulosa cells and in cumulus-oocyte complex during follicular development from small to large follicles. Opposite results were observed in theca cells. Expression of adiponectin was highest in the late stages of corpus luteum (CL) regression, whereas lower expression was recorded in active CL (P < 0.05). AdipoR1 and AdipoR2 expression increased during the terminal follicular growth in granulosa and theca cells (P < 0.05) and during the luteal phase progress in CL. There was positive correlation between adiponectin mRNA level in granulosa cells from large follicles and follicular fluid estradiol concentration (r = 0.48, P < 0.05) and negative correlation between adiponectin mRNA abundance in theca cells and follicular fluid progesterone concentration (r = -0.44, P < 0.05). In conclusion, we found that the physiologic status of the ovary has significant effects on the natural expression patterns of adiponectin and its receptors in follicular and luteal cells of bovine ovary.  相似文献   

2.
3.
4.
The aim of this study was to investigate the presence and localization of gonadotropin-releasing hormone receptor-I (GnRHRI), gonadotropin receptors (FSHR, LHR), progesterone receptor (PGR), and progesterone receptor membrane-binding component-I (PGRMCI) in the different developmental stages of the rabbit follicle. The ovaries were collected from four healthy New Zealand white rabbits, and the mRNA expression and protein levels of GnRHRI, FSHR, LHR, PGR, and PGRMCI were examined with real-time PCR and immunohistochemistry. The results showed that GnRHRI, FSHR, LHR, PGR, and PGRMCI mRNA was expressed in the ovary; furthermore, we show cell-type specific and follicular development stage-specific expression of these receptors at the protein level. Specifically, all of the receptors were detected in the oocytes from the primordial to the tertiary follicles and in the granulosa and theca cells from the secondary and tertiary follicles. In the mature follicles, all receptors were primarily localized in the granulosa and theca cells. In addition, LHR was also localized in the granulosa cells from the primordial and primary follicles. With follicular development, the expression level of all of the receptors, except GnRHRI, in the follicles showed a tendency to decrease because the area of the follicle increased sharply. The expression level of GnRHRI, FSHR, and PGR in the granulosa and theca cells showed an increasing trend with ongoing follicular development. Interestingly, the expression level of FSHR in the oocytes obviously decreased from the primary to the tertiary follicles, whereas LHR in the oocytes increased from the secondary to tertiary follicles. In conclusion, the expression of GnRHRI, the gonadotropin receptors, PGR, and PGRMCI decreased from the preantral follicles (primordial, primary, and secondary follicles) to the tertiary follicles. The expression of GnRHRI and LHR in the oocytes increased from the secondary to the tertiary follicles, whereas FSHR decreased from the primary to the tertiary follicles. The expression of GnRHRI and PGR in the granulosa and theca cells increased from the secondary to the mature follicles. These observations suggest that these receptors play roles in follicular development and participate in the regulation of follicular development.  相似文献   

5.
6.
The sustainability and production of collared peccary (Pecari tajacu) has been studied in the last few years; however, further information on its reproduction is necessary for breeding systems success. Understanding folliculogenesis aspects will contribute to effective reproductive biotechniques, which are useful in the preservation and production of wildlife. The aim of this study was-to evaluate the ovarian folliculogenesis in collared peccary. Ovaries from six adult females of collared peccary were obtained through ovariectomy and analyzed. These were fixed in aqueous Bouin's solution and sectioned into 7 microm slices, stained with hematoxilin-eosin and analyzed by light microscopy. The number of pre-antral and antral follicles per ovary was estimated using the Fractionator Method. The follicles, oocytes and oocyte nuclei were measured using an ocular micrometer. Results showed that the length, width, thickness, weight, and the gross anatomy of the right and left ovaries were not significantly different. However, the mean number of corpora lutea was different between the phases of the estrous cycle (p<0.05), with the highest mean in the luteal phase. Primordial follicles were found in the cortex; the oocytes were enveloped by a single layer of flattened follicular cells. In the primary follicles, proliferation of the follicular cells gave rise to cuboidal cells (granulosa cells). The secondary follicle was characterized by two or more concentric layers of cuboidal cells (granulosa), beginning of antrum formation, and the presence of pellucid zone and theca cells. Antral follicles were characterized by a central cavity (antrum), the presence of cumulus oophorus and theca layers (interna and externa). In the right ovary, the values of the primordial and primary follicles were similar, but significantly different from the secondary ones (p<0.05). In the left ovary, significant differences were observed between all follicles in the follicular phase (p<0.05); the mean number of primordial and primary follicles was similar in the luteal phase. The mean number of pre-antral follicles and antral follicles in the follicular phase was higher in the left ovary (p<0.05). The mean number of antral follicles in the luteal phase was similar in both ovaries. We also found significant differences in mean diameter of preantral follicles, oocyte, granulosa layer and oocyte nucleus during the estrous cycle. In the antral follicles a significant difference was observed only in follicular diameter (p<0.05). The predominance of active primordial and primary follicles was found in both phases; otherwise the secondary follicles and antral follicles showed a high degree of degeneration. The results obtained in the present work will strengthen the development of biotechnology programs to improve the productive potential and conservation of the collared peccary.  相似文献   

7.
Sirard MA  Coenen K 《Theriogenology》1993,40(5):933-942
To prolong the culture of oocytes, it is essential to know how the follicle maintains meiotic arrest. This study was undertaken to evaluate the short-term effects (24 h) of the co-culture of follicular hemi-sections, including theca and granulosa cells, with cumulus-enclosed primary oocytes on meiotic resumption. Bovine oocytes were collected from 1 to 5-mm follicles from ovaries kept at 35 degrees C. Follicular hemi-sections were prepared by careful dissection of another group of follicles of the same size but from ovaries transported on ice. Following 24 h of co-culture, the oocytes were either fixed for determination of nuclear maturation or matured for an additional 24 h to evaluate reversibility of inhibition. The inhibitory action of the hemi-sections on meiotic resumption of oocytes was directly related to the amount of tissue and did not require direct physical contact between the cumulus and the follicular wall. The inhibition was reversible after 24 h of co-culture. Therefore, follicular tissue can be used to maintain meiotic arrest for at least 24 h, thus allowing for the study of changes in developmental competence during late folliculogenesis.  相似文献   

8.
During luteinization, circulating high-density lipoproteins supply cholesterol to ovarian cells via the scavenger receptor-B1 (SCARB1). In the mouse, SCARB1 is expressed in cytoplasm and periphery of theca, granulosa, and cumulus cells of developing follicles and increases dramatically during formation of corpora lutea. Blockade of ovulation in mice with meloxicam, a prostaglandin synthase-2 inhibitor, resulted in follicles with oocytes entrapped in unexpanded cumulus complexes and with granulosa cells with luteinized morphology and expressing SCARB1 characteristic of luteinization. Mice bearing null mutation of the Scarb1 gene (SCARB1−/−) had ovaries with small corpora lutea, large follicles with hypertrophied theca cells, and follicular cysts with blood-filled cavities. Plasma progesterone concentrations were decreased 50% in mice with Scarb1 gene disruption. When SCARB1−/− mice were treated with a combination of mevinolin [an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR)] and chloroquine (an inhibitor of lysosomal processing of low-density lipoproteins), serum progesterone was further reduced. HMGR protein expression increased in SCARB1−/− mice, independent of treatment. It was concluded that theca, granulosa, and cumulus cells express SCARB1 during follicle development, but maximum expression depends on luteinization. Knockout of SCARB1−/− leads to ovarian pathology and suboptimal luteal steroidogenesis. Therefore, SCARB1 expression is essential for maintaining normal ovarian cholesterol homeostasis and luteal steroid synthesis.  相似文献   

9.
Polycystic ovary syndrome (PCOS), characterized by ovarian androgen excess, is the commonest endocrine disorder in women. Obesity increases androgen synthesis, a phenomenon attributed to the accompanying hyperinsulinemia. Our hypothesis was that adipokines, fat cell-derived hormones, play a direct role in modulating ovarian androgen secretion. Therefore, the aims of this study were to explore the effects of adipokines (in particular, adiponectin) on ovarian steroidogenesis and compare the expression of adiponectin receptors in ovaries from women with and without PCO. Sections of archived human ovaries (nine from women with normal ovaries and 16 with PCOS, classified histologically, with reference to menstrual history and ultrasound) were analysed by quantitative morphometry and the proportion of positive-labelling cells compared. In addition, studies of androgen production in relation to adipokine function in primary bovine theca cell culture were also performed. A significantly lower proportion of theca cells expressed adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) in polycystic ovaries than in normal ovaries. In cultured theca cells, adiponectin suppressed androstenedione production and gene expression of LH receptor and key enzymes in the androgen synthesis pathway. Moreover, knockdown of genes for AdipoR1 and AdipoR2 was associated with increased androstenedione secretion by bovine theca cells. These results provide evidence for a direct link between fat cell metabolism and ovarian steroidogenesis, suggesting that disruption of adiponectin and/or its receptors plays a key role in pathogenesis of hyperandrogenism in PCOS.  相似文献   

10.
Characterization of integrin expression in the mouse ovary   总被引:7,自引:0,他引:7  
Integrin alpha:beta heterodimers mediate cell contacts to the extracellular matrix and initiate intracellular signaling cascades in response to a variety of factors. Integrins interact with many determinants of cellular phenotypes and play roles in controlling the development, structural integrity, and function of every type of tissue. Despite their importance, little is known about the regulation of integrin subunits in the mammalian ovary and how they function in folliculogenesis. To determine their relevance to ovarian physiology, we have studied the expression of integrin subunit mRNAs by Northern blot analysis and in situ hybridization in ovaries of wild-type, growth differentiation factor 9 (Gdf 9) knockout, FSHbeta (Fshb) knockout, and inhibin alpha (Inha) knockout mice. Integrin alpha6 mRNA is expressed in oocytes and granulosa cells of single-layer follicles and in oocytes and theca cells of multilayer follicles. Integrin alpha6 is highly expressed in Gdf 9 knockout ovaries, which are enriched in oocytes and primary (single layer) follicles because of a block at this stage of follicular development. Integrin alpha(v) mRNA is most highly expressed in the granulosa cells of multilayer growing follicles, and therefore only low levels of expression are detectable in the Gdf 9 knockout ovaries. Integrin beta1 mRNA exhibits a broad expression pattern in ovaries, including oocytes, granulosa cells, theca cells, and corpora lutea. Integrin beta3 mRNA is expressed in theca and interstitial cells and is upregulated in corpora lutea. It is nearly undetectable in ovaries of Fshb knockout mice, which develop preantral follicles but have no luteal cells. Integrin beta5 mRNA is predominantly expressed in granulosa cells of multilayer follicles. It is expressed at high levels in the Fshb knockout mice and in a compartmentalized manner in the granulosa cell/Sertoli cell tumors that develop in the Inha knockout mice. Specific integrins are associated with ovarian cellular phenotypes in mice, which raises intriguing possibilities as to integrin functions in oocyte competence, follicular development, luteinization, and granulosa cell proliferation.  相似文献   

11.
Summary The observation that tissue-type plasminogen activator (tPA) activity increased dramatically in preovulatory follicles has led to the hypothesis that plasminogen activation is causally related to follicle rupture. With immunohistochemistry, we have studied the appearance of tPA in ovaries of immature rats induced to ovulate and in adult cycling rats. Treatment of immature female rats with a single dose of pregnant mare serum gonadotropin (PMSG) induced follicular maturation. A subsequent human chorionic gonadotropin (hCG) injection resulted in follicle rupture 12–14 h later. PMSG treatment alone did not induce appearance of tPA-immunoreactive cells in any ovarian compartment. After hCG stimulation, however, theca cells, granulosa cells, and oocytes of pre- and postovulatory follicles displayed distinct tPA immunoreactivity. Fibroblastlike cells in the theca layers and tunica albuginea of the follicle apex also demonstrated localized cytoplasmic tPA reactivity. In addition to tPA synthesis in preovulatory follicles, hCG also induced tPA staining in the theca (but not granulosa) layers of non-ovulatory follicles. At 24 h after hCG treatment, there was a marked tPA staining in developing corpora lutea, ovulated ova, and oviductal epithelium. Ovaries from regularly cycling adult rats displayed a similar ovulation-related pattern of tPA immunostaining. The appearance of tPA in different cell types of the preovulatory follicle and in the fibroblast-like cells at the follicle apex, strengthens the hypothesis of a direct involvement of tPA in follicle rupture. Presence of tPA in postovulatory oocytes, cumulus cells, and surrounding oviductal epithelium may also indicate a role for tPA in the transfer of eggs in the oviduct.This work was supported by NIH Research Grants HD-14084; 12303  相似文献   

12.
13.
Ovarian changes during the reproductive cycle of the oviparous garden lizard (Calotes versicolor) are described. It ovulates from last week of June to first week of September but most often in July and August when the monsoon occurs. The number of eggs ovulated vary from 10 to 32. After ovulation, the ovaries are reduced in size. From October to May, the ovaries contain small pre-vitellogenic follicles, which increase in size in June when most of yolk deposition occurs. Several nuclei are seen in the ooplasm of pre-vitellogenic follicles; they are finally absorbed before yolk deposition starts. Follicular atresia generally occurs in follicles with polymorphic granulosae, in post-ovulatory ovaries. Presumably interstitial gland cells are formed by the hypertrophy of the theca interna cells of atretic follicles. Pre-ovulatory follicles have highly vascularized thecae and invaginations of the follicular epithelium. After ovulation, the follicle cells hypertrophy to form the luteal cell mass filling the follicular cavity. Fibroblasts, which appear to arise from the theca interna, invade the luteal cell mass and form septa. Capillaries occur in the luteal cell mass.  相似文献   

14.
15.
16.
Expression of adiponectin receptors in pancreatic beta cells   总被引:28,自引:0,他引:28  
Pancreatic beta cell dysfunction is an early and crucial pathogenic factor in the development of type 2 diabetes. Free fatty acids (FFA) and adipokines released from adipose tissues lead to both the development of insulin resistance and beta cell dysfunction. Adiponectin is a novel adipokine with antidiabetic properties. Its circulating concentrations are reduced in subjects with increased visceral adiposity, insulin resistance, or type 2 diabetes. Very recently, the cloning of two adiponectin receptors AdipoR1 and AdipoR2 was reported. AdipoR1 is abundantly expressed in muscle, while AdipoR2 is predominantly expressed in liver. Here we report the marked expression of mRNAs for the adiponectin receptors AdipoR1 and AdipoR2 in human and rat pancreatic beta cells, at levels similar to liver and greater than muscle. Adiponectin receptor expression is increased by beta cell exposure to the unsaturated FFA oleate, and treatment of insulin-producing cells with globular adiponectin induces lipoprotein lipase expression. Regulated adiponectin receptor expression on pancreatic beta cells might be a novel mechanism modulating the effects of circulating adiponectin.  相似文献   

17.
Adiponectin, an adipocyte-derived protein, has cardioprotective actions. We elucidated the role of the adiponectin receptors AdipoR1 and AdipoR2 in the effects of adiponectin on endothelin-1 (ET-1)-induced hypertrophy in cultured cardiomyocytes, and we examined the expression of adiponectin receptors in normal and infarcted mouse hearts. Recombinant full-length adiponectin suppressed the ET-1-induced increase in cell surface area and [(3)H]leucine incorporation into cultured cardiomyocytes compared with cells treated with ET-1 alone. Transfection of small interfering RNA (siRNA) specific for AdipoR1 or AdipoR2 reversed the suppressive effects of adiponectin on ET-1-induced cellular hypertrophy in cultured cardiomyocytes. Adiponectin induced phosphorylation of AMP-activated protein kinase (AMPK) and inhibited ET-1-induced ERK1/2 phosphorylation, which were also reversible by transfection of siRNA for AdipoR1 or AdipoR2 in cultured cardiomyocytes. Transfection of siRNA for alpha(2)-catalytic subunits of AMPK reduced the inhibitory effects of adiponectin on ET-1-induced cellular hypertrophy and ERK1/2 phosphorylation. Effects of globular adiponectin were similar to those of full-length adiponectin, and siRNA for AdipoR1 reversed the actions of globular adiponectin. Compared with normal left ventricle, expression levels of AdipoR1 mRNA and protein were decreased in the remote, as well as the infarcted, area after myocardial infarction in mouse hearts. In conclusion, AdipoR1 and AdipoR2 mediate the suppressive effects of full-length and globular adiponectin on ET-1-induced hypertrophy in cultured cardiomyocytes, and AMPK is involved in signal transduction through these receptors. AdipoR1 and AdipoR2 might play a role in the pathogenesis of ET-1-related cardiomyocyte hypertrophy after myocardial infarction.  相似文献   

18.
Influence of the dominant follicle on oocytes from subordinate follicles   总被引:4,自引:0,他引:4  
Hagemann LJ 《Theriogenology》1999,51(2):449-459
As the oocyte grows within the follicle, a number of factors influence its health and developmental competence. These factors include follicle size, day of estrous cycle, level of atresia and influence of other follicles such as the dominant follicle. Follicles were dissected from ovaries of synchronized dairy cows on four days during the estrous cycle, and the oocyte from each follicle collected, matured, fertilized and cultured singly until Day 8. Development to blastocyst was greater in oocytes collected during phases of follicular growth than those collected during phases of follicular dominance (P<0.001) over all follicle size categories. Oocyte competence tended to increase with increasing follicle size (P<0.1). Follicular cells analyzed by flow cytometry showed an increase in proportion of apoptotic cells in subordinate follicles during the dominant phase compared to growth phase (P<0.05). Thus, the dominant follicle on both oocyte competence and levels of atresia. Further studies on the effect of dominance has shown that lactate production in cumulus-oocyte-complexes (COCs) from medium-sized follicles collected during a dominance phase and small follicles collected during a growth phase are no different from other follicles, despite having significantly lower uptake of glucose (P<0.1). Thus, COCs from different follicle subclasses differ in their nutrient requirements, and current IVM technology needs further improvement to better assist those oocytes that are developmentally challenged.  相似文献   

19.
Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.  相似文献   

20.
Adiponectin, also known as Acrp30, is an adipose tissue-derived hormone with anti-atherogenic, anti-diabetic and insulin sensitizing properties. Two seven-transmembrane domain-containing proteins, AdipoR1 and AdipoR2, have recently been identified as adiponectin receptors, yet signalling events downstream of these receptors remain poorly defined. By using the cytoplasmic domain of AdipoR1 as bait, we screened a yeast two-hybrid cDNA library derived from human fetal brain. This screening led to the identification of a phosphotyrosine binding domain and a pleckstrin homology domain-containing adaptor protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) domain and leucine zipper motif). APPL1 interacts with adiponectin receptors in mammalian cells and the interaction is stimulated by adiponectin. Overexpression of APPL1 increases, and suppression of APPL1 level reduces, adiponectin signalling and adiponectin-mediated downstream events (such as lipid oxidation, glucose uptake and the membrane translocation of glucose transport 4 (GLUT4)). Adiponectin stimulates the interaction between APPL1 and Rab5 (a small GTPase) interaction, leading to increased GLUT4 membrane translocation. APPL1 also acts as a critical regulator of the crosstalk between adiponectin signalling and insulin signalling pathways. These results demonstrate a key function for APPL1 in adiponectin signalling and provide a molecular mechanism for the insulin sensitizing function of adiponectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号