首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
在20t工业发酵罐中,研究了涡轮桨和翼形轴流桨搅拌对红霉素发酵过程的影响,重点考察了粘度、溶氧、效价、搅拌电流和糖代谢等过程参数的变化,以及搅拌功耗与发酵产量之间的关系。研究结果表明:(1)不同的搅拌桨搅拌其发酵过程参数(粘度,溶氧,效价等)随时间的变化曲线有明显的差异;(2)搅拌功耗同发酵产量之间的关系,翼形桨明显不同于涡轮桨;(3)在相同的生产条件下,用翼形桨代替涡轮桨可节省搅拌功耗。  相似文献   

2.
搅拌桨是高好氧高黏度微生物发酵实现高效反应必不可少的因素之一,不同搅拌桨组合对发酵过程的影响十分重要。威兰胶是由产碱杆菌在高耗氧高粘度发酵体系下合成的胞外微生物多糖,广泛应用于水泥、石油、油墨、食品等行业中。本研究借助于计算流体力学(Computational fluid dynamics,CFD)的方法,以威兰胶发酵液体系为研究体系,研究了6种不同搅拌桨组合在反应器内流体速率分布、剪切速率、和气含率等参数。将模拟效果较好的3种组合用于威兰胶发酵过程。研究表明MB-4-6搅拌桨组合对改善发酵罐内部的溶氧及流场分布效果最明显,威兰胶产量水平提高了13%。同时在该组合下威兰胶的产品粘度得到有效提高。  相似文献   

3.
出芽短梗霉发酵过程溶氧控制的研究   总被引:3,自引:1,他引:2  
在搅拌罐式生物反应器中,通过控制DO(溶氧浓度)的变化,对出芽短梗霉(Aureobasidium pullulans)发酵过程的控制进行了研究。以100g/L玉米粉水解液做碳源,比较了不同溶氧控制条件下发酵参数的变化及其对出芽短梗霉发酵结果的影响。结果表明,过低的DO对菌体生长和多糖生产都不利,过高的DO使培养液中糖大部分消耗在菌体的生长上,也不利于多糖的生产,通过控制搅拌速度和通气量能将DO维持在较合适的水平。  相似文献   

4.
自制的酵母水解液成功替代有机N源酵母浸膏被应用于木聚糖酶发酵,大大降低了原料成本。在此基础上,于50 L罐中进行发酵工艺放大,得到最佳发酵条件:搅拌转速220 r/min、空气流量23 L/min、初始pH 5.5、温度30℃、罐压0.04 MPa,最终发现产酶水平可达到2 864 U/mL,用箭叶圆盘涡轮搅拌桨代替上层平叶圆盘涡轮搅拌桨,产酶水平无显著变化,搅拌功率节约11%。  相似文献   

5.
主要研究了发酵法生产葡萄糖酸钠过程中的各参数的变化规律,通过在线监测和离线分析检测,得出各参数的变化规律:各参数的变化均与黑曲霉的生长周期有关;发酵初期(0~5 h)各参数维持恒定;发酵期(5~16 h)溶氧、残糖质量浓度分别快速降低至30%、15 g/L;酶活、葡萄糖酸钠含量快速上涨至500 U/mL、18 g/L;发酵中后期(16~20 h)维持阶段,各参数缓慢变化;发酵结束后溶氧回升。各参数的变化规律与黑曲霉生长周期的关系研究为工厂进一步优化发酵工艺、缩短发酵周期提供原始的理论依据。  相似文献   

6.
基于途径分析的L-异亮氨酸发酵溶氧控制研究   总被引:4,自引:0,他引:4  
利用途径分析方法对黄色短杆菌(Brevibacterium flavum)TC-21 生产L-异亮氨酸的途径进行了分析,确定了黄色短杆菌TC-21生产L-异亮氨酸的最佳途径的通量分布,根据途径分析的结果,TCA循环的代谢流量对L-异亮氨酸产量有明显影响,而TCA循环与发酵过程中的溶氧密切相关,因此可以通过控制溶氧来提高L-异亮氨酸产量。在发酵过程的不同阶段,根据菌体生长和产酸的需求,改变TCA代谢流量,可以有效提高产酸率。实验证明,通过溶氧分阶段控制发酵生产L-异亮氨酸,比溶氧恒定控制方式发酵产率提高了15.77%。实验结果说明,用途径分析的结果指导发酵过程中的溶氧可以大幅度提高L-异亮氨酸的产量。  相似文献   

7.
谭鑫  李超  郭美锦 《生物工程学报》2022,38(12):4692-4704
红霉素(erythromycin)是由绛红色糖多胞菌(Saccharopolyspora erythraea)发酵生产的次级代谢产物,其生产水平不仅受发酵工艺的影响,也受反应器结构影响。为解决红霉素发酵过程放大问题,本研究采用时间常数法和计算流体力学(computational fluid dynamics,CFD)数值模拟验证相结合的方法设计了500m3超大规模红霉素耗氧发酵生物反应器。首先,通过对50L反应器红霉素发酵过程研究,发现溶氧是关键性限制因素,通过氧消耗速率(oxygen uptake rate,OUR)等参数分析计算得到设备的氧供应时间常数tmt需小于6.25s。然后,基于时间常数法和经验关联式理性设计500m3反应器搅拌桨叶组合方式,即底层BDT8桨叶+两层MSX4桨叶的搅拌桨组合,并通过经验公式及CFD方法对设计结果进行了模拟验证。两种验证方法结果均表明500m³反应器采取底层BDT8桨叶+两层MSX4桨叶的组合方式时设备的氧供应时间常数小于6.25s,且反应器内流场特性(如持气率、剪切率和速度矢量等)均能满足红霉素大规模发酵的需要。经实际发酵验证,设计的生物反应器能够满足红霉素的工业规模发酵应用。  相似文献   

8.
溶氧控制策略对结冷胶发酵过程的影响   总被引:1,自引:0,他引:1  
结冷胶作为一种吸水水性极强的胶体,其广泛应用于食品,饮料,医药,化妆品等行业。发酵法生产结冷胶的过程中,由于发酵液的黏度很高,溶解氧(DO)的控制极为困难。大规模工业化生产结冷胶的过程中,通常可以通过增加通气量或提高搅拌转速这两种策略来提高发酵过程中的溶氧水平。本文通过对比这两种控制策略对60吨发酵罐生产结冷胶产量、能耗的影响,得出通过提高搅拌转速的溶氧控制策略更加高效和节能。提高搅拌转速的发酵批次与增加通气量的发酵批次相比,结冷胶平均产量提高了9%,能耗降低了10%。  相似文献   

9.
影响酵母细胞麦角固醇的发酵控制参数的分析   总被引:1,自引:0,他引:1  
高桦  谭天伟   《生物工程学报》2001,17(6):693-697
研究了麦角固醇发酵过程中的参数。比较了溶氧、OUR、Ph和残糖浓度与酿酒酵母的生物量和麦角固醇含量的关系 ,并研究了这些参数之间的内在联系。研究表明 ,溶氧能比较准确地反映酵母的生长状况 ,是发酵过程中的一个较好的控制参数。将溶氧控制在 12 %左右能有效提高单位体积发酵液中的麦角固醇的产量。  相似文献   

10.
利用BIOSTATC10自控发酵罐 ,研究了Bt菌种Gc - 91进行间歇培养时氧的供需特性。研究表明 ,以生产培养基配方进行发酵时 ,生长高峰期的临界氧浓度在DO12 .0 %~ 17.5%之间 ,控制溶氧接近于临界氧浓度进行发酵 ,Bt晶体含量和毒力效价有大幅提高。  相似文献   

11.
Radial flow Rushton impellers were compared qualitatively with axial flow hydrofoil impellers (Maxflo T and A315) at the pilot scale. Six types of impellers were compared for qualitative differences in mass transfer. Measurements were conducted using three model systems: water, glycerol and Melojel (soluble starch). Power measurements were obtained using watt transducers, which although limited in accuracy and prone to interferences, were able to provide useful qualitative monitoring results. While there was little effect of impeller type on mass transfer as measured by the rapid pressure increase technique, significant qualitative differences were observed using the rapid temperature increase technique specifically for the Melojel and glycerol model systems. The Miller correlation, relating gassed-to-ungassed power, was used effectively to qualitatively evaluate the power drop upon gassing for both the model systems and a Streptomyces fermentation for the various impeller types. A high oxygen demand Streptomcyes fermentation then was conducted in fermenters possessing each type of impeller. Performance was not adequate with the A315 impellers pumping upwards and the small diameter Maxflo T impellers. Peak titers and profiles of the estimated apparent broth viscosity varied depending upon the impeller type. Mass transfer rates generally declined with higher viscosities when other fermentation operating conditions where held constant. Overall, values for OUR, k L a, P g /V L and other calculated mass transfer and power input quantities for the A315 pumping upwards and undersized Maxflo T (D T /D I ?=?2.3) impellers were at the lower end of the range obtained for the larger Maxflo T (D T /D I ?=?1.8–2.0) and A315 impellers pumping downwards. Rushton impellers generally behaved qualitatively similar to hydrofoil impellers based on these calculated quantities.  相似文献   

12.
This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.  相似文献   

13.
Summary The Michel and Miller (1962) equation is routinely used to estimate the effect of aeration on power consumption in submerged culture fermentation systems. However this correlation was developed for systems that do not contain solid substrates. Since many industrial fermentations use solid substrates, this study developed a modification of the Michel and Miller equation that can be used to predict power consumption when solid substrates are present. A correlation relating power to solids addition was established by adding bran and apple pomace to water, and measuring the power drawn by four separate impeller configurations.This correlation applies to solids content up to 16.7% w/w and bulk densities between 1020 to 1210 kg/m3. It was found that when aerated the power consumption decreased upon addition of solid substrate. The most likely explanation of this behaviour is that initially the gas hold up increased, decreasing power consumption. At high solid loadings, the power decrease was up to 30% (compared to 66% decrease in power caused by high aeration rates).  相似文献   

14.
Influence of impeller type on power input in fermentation vessels   总被引:2,自引:2,他引:0  
Prior investigations comparing radial flow Rushton impellers with axial flow hydrofoil impellers (Maxflo T and A315) were extended at the pilot scale. Six types of impellers (disk-style Rushton, Prochem Maxflo T hydrofoils of three diameters pumping downwards and A315 hydrofoils pumping upwards and downwards) were compared for qualitative differences in power number behavior with Reynolds' number, single versus double impeller power draw, gassed power reduction with aeration number and gas hold-up. Power measurements were obtained using watt transducers which, although limited in accuracy and prone to interferences, were able to provide useful qualitative monitoring results. Measurements were conducted using three model liquid systems: water, glycerol and Melojel (soluble starch). Apparent viscosities for actual Streptomyces cultivations were estimated using measured gassed power values and the experimental relationships obtained for gassed/ungassed power to aeration number and power number to Reynolds' number for the glycerol model system. Results confirmed the lower power number and lower shear environment for hydrofoil impellers, yet suggested useful trends for various process parameters and process fluids.  相似文献   

15.
A study was carried out to optimize selected parameters for decolorization of a triarylmethane dye, such as crystal violet by white rot fungus, Pycnoporus sanguineus, pellets. The parameters studied were initial dye concentration (ppm), agitation speed (rpm), and process time (days) and were optimized using response surface methodology (RSM). It is shown that process time, agitation speed, and their interactions have significant effects on the decolorization process. Following the optimization, the decolorization study was extended to a stirred tank reactor (STR) process. Effects of different geometry of impellers on the decolorization process and power consumption were studied. Novel impeller geometries, such as 180° curved blade and 60° angled blade impellers, were used in the STR. The application of 180° curved blade impeller resulted in higher percentage of decolorization at a relatively less power consumption as compared with 60° angled blade impeller.  相似文献   

16.
Blend times and power consumptions were determined for different arrangements of two equal diameter impellers, a high efficiency A310 and a “Dumbo Ear” impeller with three large, “elephant ear” blades designed for low shear agitation. A 9 l round-bottomed, unbaffled bioreactor was used in these studies. Blend times were taken as the time for the disappearance of the pink color of a basic solution of phenolphthalein on neutralization by excess acid, and the power consumption was obtained from torque measurements. The mixing results show that the Dumbo Ear impeller gives shorter blend times than the A310?at equal rotational speeds for most of the conditions studied. As expected, the Dumbo Ear impeller consumes more power than the A310?at the same rotational speed, due to its large area blades. However, the Dumbo Ear impeller also gives shorter blend times than the A310?at equal power consumptions.  相似文献   

17.
A novel milliliter‐scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter‐scale. A newly designed one‐sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface‐to‐volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa) > 0.15 s?1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter‐scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory‐scale stirred tank bioreactor with six‐bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter‐scale stirred tank bioreactor was reduced compared to the laboratory‐scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale‐up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter‐scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear‐thinning non‐Newtonian behavior. The newly developed one‐sided paddle impellers operated in unbaffled reactors on a 10 milliliter‐scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100 h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443–451. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Aerated and unaerated power consumption and flow patterns in a 0.56 m diameter agitated vessel containing water with dual Rushton turbines have been studied. Under unaerated conditions with a liquid height-to-diameter ratio of 2, an impeller spacing of 2 to 3 times the impeller is required for each to draw an amount of power equal to a single impeller. For aerated conditions, if a similar spacing is used, equations for the flooding-loading transition and for power consumption for a single Rushton impeller can be extended relatively easily to dual systems. All results for this spacing are explained by reference to bulk flow patterns and gassed-filled cavity structures and the proportion of sparged gas flowing through the upper impeller is also estimated. Such a spacing is generally recommended since it maximizes the power draw and hence the potential for oxygen mass transfer. Data are presented for other spacings but the results do not fit in easily with single agitator studies because strong impeller-impeller flow pattern interactions occur.  相似文献   

19.
Foam disruption by agitation—the stirring as foam disruption (SAFD) technique—was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD—foam entrainment—was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号