首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The drop vertical jump is a popular plyometric exercise. Two distinct techniques are commonly used to initiate the drop vertical jump. With the ‘step-off’ technique, athletes step off a raised platform with their dominant limb, while their non-dominant limb remains on the platform. In contrast, with the ‘drop-off’ technique, athletes lean forward and drop off the platform, with both feet leaving the platform more simultaneously. The purpose of this study was to compare landing and jumping kinetics, inter-limb kinetic symmetry, and jump performance when individuals used the step-off and drop-off techniques, and to examine whether potential differences between these techniques are affected by platform height. Sixteen subjects completed drop vertical jumps with the drop-off and step-off techniques, from relatively low and high platform heights. Ground reactions forces were recorded for the dominant and non-dominant limbs during the land-and-jump phase of the drop vertical jump. Subjects demonstrated greater inter-limb asymmetry in peak impact forces when using the step-off technique, vs. the drop-off technique. This difference between the techniques was consistent across platform heights. The step-off technique appears to result in greater asymmetry in limb loading, which could contribute to the development of neuromuscular asymmetries between the limbs and/or asymmetric landing patterns.  相似文献   

2.
Neural, mechanical and muscle factors influence muscle force production. This study was, therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P<0.01-0.001) with higher rates for force production (P<0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.  相似文献   

3.
4.
The force-length relationship of the human muscle-tendon complex (MTC) of the triceps surae and the achilles tendon was investigated in various stretch load conditions. Six male subjects performed various vertical jumps with maximal effort: squat jumps (SJ), counter movement jumps (CMJ) and drop jumps (DJ) from a height of 24 cm, 40 cm and 56 cm. The force-length relationship was calculated from the signals of the components of the ground reaction forces and the kinematic data obtained from the high-speed film records. Surface electromyograms (EMG) of the soleus, gastrocnemius and tibialis anterior muscles were also recorded. The force-length diagrams showed individually high sensitivity to the imposed stretch load. In conditions with relatively low stretch load requirements there was a counter-clockwise direction observable, indicating that the energy absorbed during the eccentric, or lengthening phase was lower than the energy delivered during the concentric, or shortening phase. In high load conditions this relationship was reversed indicating a negative energy balance. The EMG-length diagrams of SJ and CMJ consisted of an initial isometric loading of the muscle, followed by a shortening phase with only slightly reduced EMG amplitudes. In DJ, however, the diagrams showed an initial lengthening of the MTC with fairly constant activation amplitudes. After 40 ms an isometric loading of the muscle, lasting for approximately 80 ms, was followed by a shortening phase. It was concluded that segmental stretch reflex activation represented the predominant activation process during the isometric loading phase, to meet the adequate stiffness properties of the MTC.  相似文献   

5.
6.
Mechanical efficiency (ME) of jumping exercises was compared between power-trained (n = 11) and endurance-trained athletes (n = 10) using both a biomechanical and a physiological approach. In drop jumps and in stretch-shortening cycle exercise on a special sledge (sledge jumps), the subjects performed 60 muscle actions from a dropping height of optimum minus 40 cm (O – 40), as well as from dropping heights of optimum (O) and optimum plus 40 cm (O + 40). Thus, they were tested in six different tests which lasted for a total of 3 min for each. The mean ME values in the drop jumps from the lowest dropping height upwards were as follows: 23.8 (SD 5.3)%, 35.5 (SD 10.8)% and 39.2 (SD 6.6)% for the power group, and 30.8 (SD 6.5)%, 37.5 (SD 8.7)% and 41.4 (SD 7.0)% for the endurance group. In the sledge jumps the ME values were 37.0 (SD 5.6)%,48.4 (SD 4.0)% and 54.9 (SD 8.5)% for the power group, and 40.2 (SD 5.9)%, 46.9 (SD 5.7)% and 58.5 (SD 5.5)% for the endurance group. As can be seen, the ME values increased with increasing stretch load. However, the groups did not differ from each other except in the drop jump condition of O – 40 (P < 0.05). The higher power (P < 0.001) among the power athletes in every measured condition was associated with a faster rate of electromyogram development during the pre-activity, and smoother muscle activity patterns in the ground contact. On the other hand, the endurance athletes had a lower blood lactate concentration after every test, and in addition a lower heart rate and ventilation during the sledge jumps than their power counterparts. Therefore, it would seem that the similar mean ME values between the subject groups could be explained by improved function of the neuromuscular system among the power group and improved metabolism among the endurance group.  相似文献   

7.
目的:通过观察肌电图(EMG)的变化,了解运动员与普通中学生在纵跳过程中,膝关节屈伸肌群工作特点,为运动员科学选材提供依据。方法:30名男女青少年运动员和30名男女普通中学生进行各种形式纵跳(蹲跳、反向跳、下落跳),测试膝关节屈伸肌群的EMG变化情况。结果:主动肌(股外肌)EMG的变化存在性别差异,随着下肢工作强度的增加,男运动员积分肌电图(iEMG)和平均功率频率(Fmean)均没有显著变化,女运动员iEMG增加,Fmean没有显著变化,对抗肌(股二头肌),随着下肢工作强度的增加。青少年运动员EMG活动变化较小,而普通中学生的EMG活动明显增加。结论:在增加工作负荷的过程中,男运动员膝关节伸肌群以提高效率为主,女运动员以提高肌肉的募集数量为主;运动员的对抗肌协调水平高于普通中学生。  相似文献   

8.
There is a discrepancy between males and females in regards to lower extremity injury rates, particularly at the knee [Agel, J., Arendt, E.A., Bershadsky, B., 2005. Anterior cruciate ligament injury in National Collegiate Athletic Association basketball and soccer: a 13-year review. American Journal of Sports Medicine 33, (4) 524-530]. Gender differences in neuromuscular recruitment characteristics of the muscles that stabilize the knee are often implicated as a factor in this discrepancy. There is considerable research in the area of gender differences in regards to neuromuscular characteristics of the lower extremity in response to perturbation; however, most studies have been performed on the adult population only. Additionally, there is no consensus as to the gender differences that have been demonstrated. The purpose of this study was to compare muscular preactivation of selected lower extremity muscles (vastus medialis, rectus femoris, and medial/lateral hamstrings) in adolescent female basketball athletes, male basketball athletes, and female non-athletes in response to a drop landing. Subjects in the female non-athlete group recruited rectus femoris significantly slower than both the female athlete and male athlete groups (619.9=588.5>200.1ms prior to ground contact). The female non-athlete group also demonstrated a significantly slower vastus medialis compared to the female athlete group (127.1 vs 408.1ms), but not significantly slower than the male athlete group (127.1 vs 275.7ms). There were no differences between female athletes and male athletes for time to initial contraction of any muscle groups. No differences were found among the groups for medial or lateral hamstring activation. This study demonstrates that physical conditioning due to basketball participation appears to affect neuromuscular recruitment in adolescents and reveals a necessity to find alternate methods of training the hamstrings for improved neuromuscular capabilities to prevent injury.  相似文献   

9.
The aims of our study were to assess the redox state of adolescent athletes and non-athletes both at rest and after acute exposure to physical load and to find relations between parameters of redox state and morphofunctional characteristics of subjects. 58 young handball players and 37 non-athletes were subjected to body composition analysis, measuring of maximal oxygen consumption and blood sampling immediately before and after a maximal progressive exercise test. At rest, athletes had significantly higher superoxide dismutase (SOD) and catalase (CAT) activity, higher levels of glutathione (GSH) and nitric oxide (NO) and lower levels of lipid peroxidation (TBARS) compared with non-athletes. A maximal exercise test induced statistically significant rise of superoxide anion radical (O2-), hydrogen peroxide (H2O2) and NO levels in non-athletes, while TBARS levels decreased. Athletes experienced the fall in NO levels and the fall in CAT activity. After exercise, athletes had significantly lower levels of O2- compared with non-athletes. Two way repeated measures ANOVA showed that the response of O2-, NO and TBARS to the exercise test was dependent on the sports engagement (training experience) of subjects. Significant correlations between morphofunctional and redox parameters were found. These results suggest that physical fitness affects redox homeostasis.  相似文献   

10.
11.
Resisted jumping devices and resisted plyometric training have become more common in recent years. The effectiveness of such training has yet to be determined among high school athletes. Sixty-four high school athletes (50 boys and 14 girls) from a variety of sports were divided into 2 groups and participated in a training intervention that differed only by the use of the VertiMax jump trainer in 1 group. Lower-body power was tested before and after the intervention and compared statistically for differences between the groups. Athletes from both groups followed a periodized training program with resistance exercises performed 2 or 3 days per week, and sprint and plyometric training (i.e., training control group) or sprint, plyometric, and VertiMax training (i.e., VertiMax group) 1 or 2 days per week, for 12 total weeks. In addition to the traditional compound lower-body lifts and equated sprint work, the VertiMax group performed supplementary exercises on the VertiMax training apparatus. The average improvement in power observed in the training control group was 49.50 +/- 97.83 W, and the increase in power in the VertiMax group was 217.14 +/- 99.21 W. The differences in power after the test and improvements in power with training were found to differ between the groups (P < 0.05) and favored the VertiMax training group. Combined with previous research with college athletes, these data show the added effectiveness of resisted jump training on the VertiMax among athletes for the development of lower-body power.  相似文献   

12.
Specificity of joint angle in isometric training   总被引:1,自引:0,他引:1  
Six healthy women (21.8 +/- 0.4 y) did isometric strength training of the left plantarflexors at an ankle joint angle of 90 degrees. Training sessions, done 3 times per week for 6 weeks, consisted of 2 sets of ten 5 s maximal voluntary contractions. Prior to and following the training, and in random order, voluntary and evoked isometric contraction strength was measured at the training angle and at additional angles: 5 degrees, 10 degrees, 15 degrees, and 20 degrees intervals in the plantarflexion and dorsiflexion directions. Evoked contraction strength was measured as the peak torque of maximal twitch contractions of triceps surae. Training increased voluntary strength at the training angle and the two adjacent angles only (p less than 0.05). Time to peak twitch torque was not affected by training. Twitch half relaxation time increased after training (p = 0.013), but the increase was not specific to the training angle. There was a small (1.1%, p less than 0.05) increase in calf circumference after training. Evoked twitch torque did not increase significantly at any joint angle. It was therefore concluded that a neural mechanism is responsible for the specificity of joint angle observed in isometric training.  相似文献   

13.
The purpose of this study was to determine if segmental skeletal length contributes to vertical jump (VJ) displacement in recreational athletes. Skeletal length measurements of the trunk, femur, tibia, and foot were obtained by palpation of bony landmarks and a standard tape measure. A pilot study (n = 10) examined the intratester and intertester reliability for each skeletal measure. The pilot investigation revealed fair to excellent intratester and intertester reliability. Seventy-eight recreational athletes (55 men and 23 women) with a mean age of 21.9 +/- 2.9 years participated in the investigation. Multiple regression analysis with gender as a categorical indicator variable revealed a significant gender difference; therefore, men and women were analyzed separately. Regression analysis for men identified foot length (p < 0.033, R(2) = 0.08) as the only significant skeletal length predictor of VJ displacement. None of the skeletal length measures was predictive of VJ displacement in women. Based on the results of this investigation, intrinsic skeletal length is not a strong predictor of VJ displacement in young adult recreational athletes.  相似文献   

14.
The purpose of this study was to evaluate the inter-device reliability of three VERT devices (Mayfonk Athletic, Florida, USA) when worn on the waist (W), left-hip (LH), and right-hip (RH) during single- and double-leg counter movement jumps (CMJ) in collegiate athletes. Thirty-two female and twenty-eight male NCAA Division II athletes (n = 60) participated in the present study. Jump height (JH) values for double-leg CMJs were analyzed by each device using a one-way repeated measures ANOVA whereas a 2 (jump leg) x 3 (wear location) repeated measures ANOVA was employed to evaluate single-leg CMJs. Reliability of the VERT devices were based upon intraclass correlation coefficients (ICC). Double-leg CMJs revealed an excellent ICC between all three VERT devices (ICC = 0.969). However, JH for RH and LH (45.69 ± 9.84 and 45.82 ± 10.45 cm, respectively) were on average lower than W (50.44 ± 12.37cm; both p < 0.001). The ICCs were excellent for right- and left-leg CMJs (ICC = 0.939 and 0.941, respectively). However, an interaction was observed (p < 0.001). No differences existed for left- or right-leg when VERT was worn on the waist. However, JH was higher when VERT devices were worn on the opposite hip of the jump leg (i.e., LH>RH for right-leg CMJs; RH>LH for leftleg CMJs; all p < 0.001). Results suggest that LH and RH are interchangeable for double-leg CMJs, but not with waist despite excellent reliability. In addition, all wear locations provided excellent ICCs for single-leg CMJs. However, waist provides more consistent JH values for right- and left-leg CMJs while RH and LH show more variability.  相似文献   

15.
With the aim of comparing kinematic and neuromuscular parameters of Bandal Chagui kicks between 7 elite and 7 subelite taekwondo athletes, nine Bandal Chaguis were performed at maximal effort in a selective reaction time design, simulating the frequency of kicks observed in taekwondo competitions. Linear and angular leg velocities were recorded through 3D motion capture system. Ground reaction forces (GRF) were evaluated by a force platform, and surface electromyographic (sEMG) signals were evaluated in the vastus lateralis, biceps femoris, rectus femoris, tensor fasciae lata, adductor magnus, gluteus maximus, gluteus medius, and gastrocnemius lateralis muscles of the kicking leg. sEMG data were processed to obtain the cocontraction indices (CI) of antagonist vs. overall (agonist and antagonist) muscle activity. CI was measured for the hip and knee, in flexion and extension, and for hip abduction. Premotor, reaction (kinetic and kinematic), and kicking times were evaluated. Timing parameters, except kinetic reaction time, were faster in elite athletes. Furthermore, CI and angular velocity during knee extension, foot and knee linear velocity, and horizontal GRF were significantly higher in elite than in subelite athletes. In conclusion, selected biomechanical parameters of Bandal Chagui appear to be useful in controlling the training status of the kick and in orienting the training goal of black belt competitors.  相似文献   

16.
A study of 1 year was performed on nine elite endurance-trained athletes (swimmers) and on eight elite strength-trained athletes (weightlifters) in order to examine the effects of training on the endocrine responses and on physical performance capacity. The measurements for the determination of serum hormone concentrations were performed at about 4-month intervals during the course of the year. The primary findings demonstrated that during the first and most intensive training period of the year in preparing for the primary competitions similar but statistically insignificant changes were observed in the concentrations of serum testosterone, free testosterone and cortisol in both the endurance-trained and strength-trained groups. After that period the changes in hormonal response over the year were infrequent and minor. A significant (p less than 0.01) decrease occurred in the strength-trained group in serum-free testosterone during the second period, which was characterized by the highest overall amount of training. Over the entire year the concentrations of serum hormones remained statistically unaltered in both groups. Slight but statistically insignificant increases of 1.2% +/- 0.8% and 2.1% +/- 5.1% were observed in the competitive performances over the year in the endurance-trained and strength-trained groups, respectively. The present findings in the two groups of elite athletes, who differed greatly with regard to the type of physiological loading, demonstrated that the overall hormonal responses both during the most intensive and during prolonged training periods were rather similar and the infrequent small changes remained well within the normal physiological range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Purpose: The present study aimed to compare the neuromuscular response under various mechanical stimulations of the lumbar spine in participants with and without chronic low back pain (cLBP). Methods: Four mechanical stimulations, characterized by forces ranging from 75 to 225 N, were delivered using a servo-controlled linear actuator motor to the L3 spinous process of 25 healthy participants and 26 participants with cLBP. Lumbar neuromuscular responses were recorded using 64-electrodes large surface electromyography arrays. Between-group differences in the dose–response relationship (neuromuscular response amplitude according to each force level) were assessed using mixed model ANOVAs. Results: No differences between groups were shown (all p values > .05). A significant linear relationship was observed between forces and neuromuscular response amplitudes (p < .001) indicating an increase in response amplitudes with increasing stimulation force. Responses were observed throughout the lumbar region with highest response amplitudes in the vicinity of the contacted vertebra. Conclusion: The neuromuscular response amplitude triggered by localized lumbar mechanical stimulations does not differ between participants with and without cLBP. Moreover, even though stimulations were delivered at specific spinal segment, a neuromuscular response, although rapidly decreasing, was observed in areas distant from the contact site.  相似文献   

19.
This study aimed to compare the effects of 6-weeks combined core strength and small-sided games training (SSGcore) vs. small-sided games (SSG) training on the physical performance of young soccer players. Thirty-eight amateur soccer players (age: 16.50 ± 0.51 years) were randomly assigned to either a SSGcore (n = 20) or a SSG group (n = 18). The SSGcore group performed upper and lower body core strength exercises combined with SSG including 2-, 3- and 4-a-sided soccer games third a week. The SSG group performed only the SSG periodization. Baseline and after the 6-week training period the Yo-Yo Intermittent Recovery Test level 1 (YYIRTL-1), 5–20-m sprint test, countermovement jump (CMJ), squat jump (SJ), triple-hop distance (THD), zigzag agility with ball (ZAWB) and without ball (ZAWOB), three corner run test (TCRT) and Y-balance test. The SSGcore group demonstrated meaningful improvements in 20 m sprint time (SSGcore: -9.1%, d = 1.42; SSG: -4.4%, d = 0.76), CMJ (SSGcore: 11.4%, d = 2.67; SSG: -7.7%, d = 1.43), SJ (SSGcore: 12.0%, d = 2.14; SSG: 5.7%, d = 1.28), THD (SSGcore: 5.0%, d = 1.39; SSG: 2.7%, d = 0.52) and TCRT (SSGcore: -3.7%, d = 0.69; SSG: -1.9%, d = 0.38). Furthermore, the SSGcore group demonstrated meaningfully higher improvement responses in both leg balance score (d = ranging from 2.11 to 2.75) compared with SSG group. These results suggest that the inclusion of core strength training to a SSG periodization is greatly effective to improve speed and strength-based conditioning in young soccer players.  相似文献   

20.
The present study aimed to investigate the effects of repetitive drop jumps (DJ) and isometric leg presses (LP) on the tendon properties in knee extensors. Before and after each endurance test, the elongation (L) of the tendon and aponeurosis of the vastus lateralis muscle was measured directly by ultrasonography while the subjects performed ramp isometric knee extensions up to maximum voluntary isometric contraction. Eight men performed 100 repetitions of the DJ and 50 repetitions of the LP for 10 seconds with 10 seconds relaxation. In the DJ, there were no significant differences in L values at any force production levels before and after each endurance test. In LP, however, the L values above 500 N were significantly greater after the endurance test than before. These results suggest that the tendon properties in knee extensors change to become more compliant after the repeated longer-duration contractions, but not after repeated ballistic exercises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号