首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated.  相似文献   

2.
The kinetics of the thermotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) and L alpha/inverted hexagonal (HII) phase transitions in fully hydrated dihexadecylphosphatidylethanolamine (DHPE) have been studied. Measurements were made by using time-resolved x-ray diffraction (TRXRD) to monitor progress of the transitions. In these studies microwave energy at 2.5 GHz was used to increase the sample temperature rapidly and uniformly through the phase transition regions. The L beta'/L alpha and L alpha/HII transitions of DHPE were examined under active microwave heating and passive cooling. The transitions were found to be repeatable and reversible, and to have an upper bound on the time required to complete the transition of less than 3 s. Regardless of the direction of the transition, both phase transitions appeared to be two-state with no accumulation of intermediates to within the sensitivity limits of the TRXRD method. The rate and amplitude of the temperature jump can be controlled by regulating microwave radiation input power. A temperature jump rate of 29 degrees C/s was obtained at a final microwave power setting of 120 W. Comparisons between previously reported fluid flow (Caffrey, M. 1985. Biochemistry. 24:4826-4844) and microwave heating studies suggest that the determination of limiting transit times will require faster heating.  相似文献   

3.
The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93 degrees C (Cer16), 60 degrees C (Cer6), and 54 degrees C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60 degrees C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides.  相似文献   

4.
The kinetics and mechanism of the barotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) has been studied using time-resolved x-ray diffraction (TRXRD). The phase transition was induced by pressure jumps of varying amplitudes in both the pressurization and depressurization directions at controlled temperature (78 degrees C). Both low- and wide-angle diffracted x rays were recorded simultaneously in live time using an x-ray-sensitive image intensifier coupled to a CCD camera and Super-VHS videotape recorder. Such an arrangement allowed for the direct and quantitative characterization of the long- (lamellar repeat spacing) and short-range order (chain packing) during a kinetic experiment. The image-processed live-time x-ray diffraction data were fitted using a nonlinear least-squares model, and the parameters of the fits were monitored continuously throughout the transition. The pressure-induced transitions from the L alpha to the L beta' phase and from the L beta' to the L alpha phase was two-state (no formation of intermediates apparent during the transition) to within the sensitivity limits of the method. The corresponding transit time (the time during which both phases coexist) associated with the long- and short-range order of the pressurization-induced L alpha-to-L beta' phase transition decreased to a limiting value of approximately 50 ms with increasing pressure jump amplitude. This limiting value was close to the response time of the detector/recording system. Thus, the intrinsic transit time of this transition in fully hydrated DHPE at 78 degrees C was less than or equal to 50 ms. In contrast, the depressurization-induced L beta'-to-L alpha phase transition was slower, taking approximately 1 s to complete, and occurred with no obvious dependence of the transit time on pressure jump amplitude. In the depressurization jump experiment, the lipid responded rapidly to the pressure jump in the L beta' phase up to the rate-determining L beta'-to-L alpha transition. Such behavior was examined carefully, as it could complicate the interpretation of phase transition kinetic measurements.  相似文献   

5.
J Shah  R I Duclos  Jr    G G Shipley 《Biophysical journal》1994,66(5):1469-1478
The structural and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine (C(18):C(2)-PC) were studied as a function of hydration. A combination of differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the phase behavior of C(18):C(2)-PC. At low hydration (e.g., 20% H2O), the differential scanning calorimetry heating curve shows a single reversible endothermic transition at 44.6 degrees C with transition enthalpy delta H = 6.4 kcal/mol. The x-ray diffraction pattern at -8 degrees C shows a lamellar structure with a small bilayer periodicity d = 46.3 A and two wide angle reflections at 4.3 and 3.95 A, characteristic of a tilted chain, L beta' bilayer gel structure. Above the main transition temperature, a liquid crystalline L alpha phase is observed with d = 53.3 A. Electron density profiles at 20% hydration suggest that C(18):C(2)-PC forms a fully interdigitated bilayer at -8 degrees C and a noninterdigitated, liquid crystalline phase above its transition temperature (T > Tm). Between 30 and 50% hydration, on heating C(18):C(2)-PC converts from a highly ordered, fully interdigitated gel phase (L beta') to a less ordered, interdigitated gel phase (L beta), which on further heating converts to a noninterdigitated liquid crystalline L alpha phase. However, the fully hydrated (> 60% H2O) C(18):C(2)-PC, after incubation at 0 degrees C, displays three endothermic transitions at 8.9 degrees C (transition I, delta H = 1.6 kcal/mol), 18.0 degrees C (transition II), and 20.1 degrees C (transition III, delta HII+III = 4.8 kcal/mol). X-ray diffraction at -8 degrees C again showed a lamellar gel phase (L beta') with a small periodicity d = 52.3 A. At 14 degrees C a less ordered, lamellar gel phase (L beta) is observed with d = 60.5 A. However, above the transition III, a broad, diffuse reflection is observed at approximately 39 A, consistent with the presence of a micellar phase. The following scheme is proposed for structural changes of fully hydrated C(18):C(2)-PC, occurring with temperature: L beta' (interdigitated)-->L beta (interdigitated)-->L alpha(noninterdigitated)-->Micelles. Thus, at low temperature C(18):C(2)-PC forms a bilayer gel phase (L beta') at all hydrations, whereas above the main transition temperature it forms a bilayer liquid crystalline phase L alpha at low hydrations and a micellar phase at high hydrations (> 60 wt% water).  相似文献   

6.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

7.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (deltad/deltaT approximately 0.22 nm/ degrees C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lalpha phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lbeta with a repeat distance, dLbeta=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid-lipid interactions through modulation of the membrane structure.  相似文献   

8.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel leads to liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar leads to hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel leads to liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the delta H values becomes 7.1 kcal X mol-1 as compared to 8.2 kcal X mol-1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (delta H = 3.1 kcal X mol-1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (-13.5 degrees C in the presence of 20,S-OH cholesterol). The delta H of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar leads to hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The delta H of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3 beta- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ratio, 1:1) monomolecular film exhibits a transition at approx. 103 A2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering.  相似文献   

10.
The thermotropic properties of N-(alpha-hydroxyacyl)-sphingosine (CER[AS]) in dry and hydrated state were studied by means of X-ray powder diffraction and FT-Raman spectroscopy. The polymorphic states of the CER[AS]/water mixture (lamellar crystalline, lamellar hexagonal gel, liquid crystalline) depend on the thermal pre-treatment of the sample. Only by heating the CER[AS]/water mixture above the melting chain transition can the system be hydrated. At room temperature, both dry and hydrated states form lamellar structures, which differ in their repeat distance and packing of hydrocarbon chains. Above the melting chain transition, hydrated CER[AS] forms a liquid crystalline hexagonal phase, whereas anhydrous CER[AS] forms an isotropic liquid phase. The various phases of hydrated CER[AS] are distinguished on the basis of the corresponding Raman spectra.  相似文献   

11.
M Caffrey  J Hogan  A S Rudolph 《Biochemistry》1991,30(8):2134-2146
Thermotropic and lyotropic mesomorphism in the polymerizable lecithin 1,2-ditricosa-10,12-diynoyl-sn-glycero-3-phosphocholine and its saturated analogue, 1,2-ditricosanoyl-sn-glycero-3-phosphocholine, has been investigated by wide- and low-angle X-ray diffraction of both powder and oriented samples and by differential scanning calorimetry. Previous studies have shown that the hydrated diacetylenic lipid forms novel microstructures (tubules and stacked bilayer sheets) in its low-temperature phase. The diffraction results indicate that at low temperatures fully hydrated tubules and sheets have an identical lamellar repeat size (d001 = 66.4 A) and crystalline-like packing of the acyl chains. Chain packing in the lamellar crystalline phase is hydration independent. A model for the polymerizable lecithin with (1) fully extended all-trans methylene segments, (2) a long-axis tilt of 32 degrees, and (3) minimal chain interdigitation seems most reasonable on energetic grounds, is consistent with the diffraction data (to 3.93-A resolution), and is likely to support facile polymerization. Above the chain "melting" transition the lamellar repeat of the polymerizable lipid increases to 74 A. The conformational similarity between tubules, sheets, and the dry powder is corroborated by calorimetry, which reveals a cooling exotherm at the same temperature where tubules form upon cooling hydrated sheets. The data suggest that although a high degree of conformational order is a pertinent feature of tubules, this character alone is not sufficient to account for tubule formation. The conformation of the corresponding saturated phosphatidylcholine appears to be similar to that of other saturated phosphatidylcholines in the lamellar gel phase. Furthermore, above the main transition temperature, the dry, saturated lipid shows evidence of a P delta phase (112 degrees C), whereas the diacetylenic lipid appears to exhibit a centered rectangular phase, R alpha (55 degrees C).  相似文献   

12.
Galactocerebroside-phospholipid interactions in bilayer membranes.   总被引:4,自引:3,他引:1       下载免费PDF全文
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the interaction of hydrated N-palmitoylgalactosylsphingosine (NPGS) and dipalmitoylphosphatidylcholine (DPPC). For mixtures containing less than 23 mol% NPGS, complete miscibility of NPGS into hydrated DPPC bilayers is observed in both the bilayer gel and liquid-crystal phases. X-ray diffraction data demonstrate insignificant differences in the DPPC-bilayer gel-phase parameters on incorporation of up to 23 mol% NPGS. At greater than 23 mol% NPGS, additional high-temperature transitions occur, indicating phase separation of cerebroside. For these cerebroside concentrations, at 20 degrees C, x-ray diffraction shows two lamellar phases, hydrated DPPC-NPGS gel bilayers (d = 64 A) containing 23 mol% NPGS, and NPGS "crystal" bilayers (d = 55 A). On heating to temperatures greater than 45 degrees C, the mixed DPPC-NPGS bilayer phase undergoes chain melting, and on further increasing the temperature progressively more NPGS is incorporated into the liquid-crystal DPPC-NPGS bilayer phase. At temperatures greater than 82 degrees C (the transition temperature of hydrated NPGS), complete lipid miscibility is observed at all DPPC/NPGS molar ratios.  相似文献   

13.
The thermotropic phase behavior of cholesterol monohydrate in water was investigated by differential scanning calorimetry, polarizing light microscopy, and x-ray diffraction. In contrast to anhydrous cholesterol which undergoes a polymorphic crystalline transition at 39 degrees C and a crystalline to liquid transition at 151 degrees C, the closed system of cholesterol monohydrate and water exhibited three reversible endothermic transitions at 86, 123, and 157 degrees C. At 86 degrees C, cholesterol monohydrate loses its water of hydration, forming the high temperature polymorph of anhydrous cholesterol. At least 24 hours were required for re-hydration of cholesterol and the rate of hydration was dependent on the polymorphic crystalline form of anhydrous cholesterol. At 123 degrees C, anhydrous crystalline cholesterol in the presence of excess water undergoes a sharp transition to a birefringent liquid crystalline phase of smectic texture. The x-ray diffraction pattern obtained from this phase contained two sharp low-angle reflections at 37.4 and 18.7 A and a diffuse wide-angle reflection centered at 5.7 A, indicating a layered smectic type of liquid crystalline structure with each layer being two cholesterol molecules thick. The liquid crystalline phase is stable over the temperature range of 123 to 157 degrees C before melting to a liquid dispersed in water. The observation of a smectic liquid crystalline phase for hydrated cholesterol correlates with its high surface activity and helps to explain its ability to exist in high concentrations in biological membranes.  相似文献   

14.
The lamellar to inverse hexagonal phase transition of lipids is much studied as a model for understanding cellular processes such as membrane fusion and pore formation. Much remains unknown, including a theoretical understanding and a definitive value of the phase transition temperature for DEPE, as literature values vary over 10°C. Avrami theory has been commonly used to analyze phase transition kinetics. However, to the best of our knowledge, Avrami theory has not been used to analyze the lamellar to inverse hexagonal transition in lipids until now. We used laser light scattering to measure phase transition temperature of the lipid DEPE (1,2-dielaidoyl-sn-phosphatidylethanolamine) and found it to be 61.0 ± 0.5°C. We found the hysteresis, |T(measured)-T(equilibrium)|, scaled as r(β), where r is the ramp rate and β=0.29 ± 0.02. This is the same power law behavior found by others for an isomer of DEPE known as DOPE (1,2-dioleoyl-sn-glycero-3 ethanolamine); however, DEPE exhibits roughly half the hysteresis of DOPE. An analysis of DEPE kinetics yields Avrami exponents ranging from 1 to 7, suggesting the transition propagates one dimensionally and is initiated by a widely varying nucleation rate.  相似文献   

15.
The dynamics and mechanism of the premelting (L beta'-P beta') and main transitions (P beta'-L alpha) in fully hydrated dipalmitoylphosphatidylcholine were examined by low-angle time-resolved x-ray diffraction (TRXRD) using microwave radiation to effect uniform, internal sample heating. Equilibrium and dynamic aspects of the transitions were investigated. The dynamic studies involved applying a temperature jump of sufficient amplitude to effect the two transitions sequentially. Our findings are as follows. (a) Microwave radiation has proven useful as a means for implementing rapid and uniform internal heating in temperature-jump studies of lipid-phase transition kinetics. (b) Heating rate can be controlled by adjusting microwave power setting. (c) The thermal expansion coefficient of the three lyotropic phases follows the sequence L beta' not equal to O greater than P beta' much greater than L alpha. (d) Regardless of temperature-jump amplitude and sample heating rate the P beta' phase was always in evidence as an intermediate between the L beta' and L alpha phases. (e) The degree of development of the P beta' phase was inversely proportional to temperature-jump amplitude and heating rate. (f) The shortest transit time recorded for the combined L beta'-P beta', and P beta'-L alpha transitions was less than 1 s. (g) Upon cooling from the L alpha phase the onset of the chain disorder/order transition was apparent as a dramatic change of slope in the scattering angle vs. time plot which is interpreted as arising from sample heating by the latent heat of the transition. (h) Based on the shape of the low-angle diffraction pattern of the P beta' phase the P beta'-L alpha transition appears to be reversible with no evidence of metastability as was observed in the slow scan TRXRD measurements of Tenchov et al. (1989. Biophys. J. 56:757-768).  相似文献   

16.
Glucocerebrosides (GlcCer) isolated from the leaves of winter rye (Secale cereale L. cv Puma) differ from the more commonly investigated natural and synthetic cerebrosides, in that greater than 95% of the fatty acids are saturated and monounsaturated hydroxy fatty acids. Isomers of the trihydroxy long chain base hydroxysphingenine (t1(8:18 cis or trans)) and isomers of sphingadienine (d18:2(4trans, 8 cis or trans)) comprise 77% and 17%, respectively, of the total long chain bases. The phase behavior of fully hydrated and dry rye leaf GlcCer was investigated using differential scanning calorimetry (DSC) and x-ray diffraction. On initial heating, aqueous dispersions of GlcCer exhibit a single endothermic transition at 56 degrees C and have an enthalpy (delta H) of 46 J/g. Cooling to 0 degrees C is accompanied by a small exothermic transition (delta H = -8 J/g) at 8 degrees C. On immediate reheating, a broad exothermic transition (delta H = -39 J/g) is observed between 10 and 20 degrees C in addition to a transition at 56 degrees C. These transitions are not reversible, and the exothermic transition rapidly diminishes when the sample is held at low temperature. Using x-ray diffraction, it was determined that the endotherm at 56 degrees C represents a transition from a highly ordered lamellar crystalline phase (Lc) with a d-spacing of 57 A and a series of wide-angle reflections in the 3-10 A range, to a lamellar liquid crystalline (L alpha) phase having a d-spacing of 55 A and a diffuse wide-angle scattering peak centered at 4.7 A. Cooling leads to the formation of a metastable gel phase (L beta) with a d-spacing of 64.0 A and a single broad reflection at 4.28 A. Subsequent warming to above 15 degrees C restores the original Lc phase. Thus, rye GlcCer in excess water exhibit a series of irreversible transitions and gel phase metastability. Dry GlcCer undergo an initial heating endothermic transition at 130 degrees C, which is ascribed to a transformation into the HII phase from a two phase state characterized by the coexistence of phases with disordered (alpha) and helical (delta) type chain conformations but of unknown lattice identity: An exotherm at 67.5 degrees C observed upon subsequent cooling is of unknown origin. Since an undercooled HII phase persists down to 19 degrees C, the exotherm may derive in part from an alpha-to-delta type chain packing conformational change especially under slow cooling conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Trehalose is believed to have the ability to protect some organisms against low temperatures. To clarify the cryoprotective mechanism of trehalose, the structure and the phase behavior of fully hydrated dihexadecylphosphatidylcholine (DHPC) membranes in the presence of various concentrations of trehalose were studied by means of differential scanning calorimetry (DSC), static x-ray diffraction, and simultaneous x-ray diffraction and DSC measurements. The temperature of the interdigitated gel (Lbeta(i))-to-ripple (Pbeta') phase transition of DHPC decreases with a rise in trehalose concentration up to approximately 1.0 M. Above a trehalose concentration of approximately 1.0 M, no Lbeta(i) phase is observed. In this connection, the electron density profile calculated from the lamellar diffraction data in the presence of 1.6 M trehalose indicates that DHPC forms noninterdigitated bilayers below the P beta' phase. It was concluded that trehalose destabilizes the Lbeta(i) phase of DHPC bilayers. This suggests that trehalose reduces the area at the interface between the lipid and water. The relation between this effect of trehalose and a low temperature tolerance was discussed from the viewpoint of cold-induced denaturation of proteins.  相似文献   

18.
B Tenchov  R Koynova    G Rapp 《Biophysical journal》1998,75(2):853-866
By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go through, but reaches a stage with coexisting Ia3d (Q230) and Lalpha phases. Upon heating, the Ia3d phase cooperatively transforms into a mixture of, presumably, Im3m and Pn3m phases at about the temperature of the Lalpha-HII transition. This transformation is readily reversible with the temperature. The lattice parameters of the DEPE cubic phases are temperature-insensitive in the Lalpha temperature range and decrease with the temperature in the range of the HII phase.  相似文献   

19.
The phase diagram of fully hydrated binary mixtures of dipalmitoylphosphatidylcholine (DPPC) with 1,2-dipalmitoylglycerol (DPG) published recently by López-García et al. identifies regions where stoichiometric complexes of 1:1 and 1:2 DPPC:DPG, respectively, are formed. In this study, the structural parameters of the 1:1 complex in the presence of pure DPPC was characterized by synchrotron low angle and static x-ray diffraction methods. Structural changes upon transitions through phase boundaries were correlated with enthalpy changes observed by differential scanning calorimetry in mixtures of DPPC with 5, 7.5, 10, and 20 mol% DPG dispersed in excess water. Phase separation of a complex in gel phase could be detected by calorimetry in the mixture containing 5 mol% DPG but was not detectable by synchrotron low angle x-ray diffraction. Static x-ray measurements show evidence of phase separation, particularly in the reflections indexing chain packing. In the mixture containing 7.5 mol% DPG, two distinct lamellar repeat spacings could be seen in the temperature range from 25 to 34 degrees C. The lamellar spacing of about 6.6 nm was assigned to pure gel phase DPPC because the change in the spacing corresponds with thermal transition of the pure phospholipid, and a longer repeat spacing of about 7.2 nm was assigned to domains of the 1:1 complex of DPPC-DPG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
M Caffrey  J Hogan    A Mencke 《Biophysical journal》1991,60(2):456-466
We present here the first study of the use of a pressure-jump to induce the ripple (P beta')/lamellar liquid crystal (L alpha) phase transition in fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The transition was monitored by using time-resolved x-ray diffraction (TRXRD). Applying a pressure-jump from atmospheric to 11.3 MPa (1640 psig, 111.6 atm) in 2.5 s induces the L alpha to P beta' phase transition which takes place in two stages. The lamellar repeat spacing initially increases from a value of 66.0 +/- 0.1 A (n = 4) to a maximum value of 70.3 +/- 0.8 A (n = 4) after 10 s and after a further 100-150 s decreases slightly to 68.5 +/- 0.3 A (n = 4). The reverse transition takes place following a pressure jump in 5.5 s from 11.3 MPa to atmospheric pressure. Again, the transition occurs in two stages with the repeat spacing steadily decreasing from an initial value of 68.5 +/- 0.3 A (n = 3) to a minimum value of 66.6 +/- 0.3 A (n = 3) after 50 s and then increasing by approximately 0.5 A over a period of 100 s. The transition temperature increases linearly with pressure up to 14.1 MPa in accordance with the Clapeyron relation, giving a dT/dP value of 0.285 degrees C/MPa (28.5 degrees C/kbar) and an associated volume change of 40 microliters/g. A dynamic compressibility of 0.13 +/- 0.01 A/MPa has been determined for the L alpha phase. This value is compared with the equilibrium compressibilities of bilayer and nonbilayer phases reported in the literature. The results suggest testable mechanisms for the pressure-induced transition involving changes in periodicity, phase hydration, chain order, and orientation. A more complete understanding of the transition mechanism will require improvement in detector spatial resolution and sensitivity, and data on the pressure sensitivity of phase hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号