首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast replication has been studied in discs cut from thebase of young spinach leaves and cultured on sterile nutrientagar. In discs grown in a growth cabinet chloroplast numbersper cell increased logarithmically with time over a 7-day cultureperiod. Chloroplast replication proceeds in a similar way incultured discs and in intact leaves. Cytokinins do not affect chloroplast replication in this systembut they stimulate the fresh-weight growth of discs. Chloroplastreplication is temperature dependent, having an optimum at 25°C. By contrast chloroplast size is at a maximum in discscultured at 12 °C. Light stimulates chloroplast replication, a linear relationshipoccurring between chloroplast number per cell and the dailyquantity of light given to discs up to a saturating value of250 J d–1. Daylength does not affect chloroplast formationin spinach. In a number of experiments a general relationship was establishedbetween chloroplast number per cell and cell size but no evidenceis available to suggest that this correlation is causal. Theresults of experiments in which discs were transferred fromdark to light suggest that some of the events which precedechloroplast replication may occur at similar rates in both lightand dark.  相似文献   

2.
Summary Some factors affecting the chloroplast replication were studied using the leaf cells of the mossPlagiomnium trichomanes. There was a significant positive correlation between chloroplast number per cell and cell volume in leaves of any developmental stage. However, when the detached leaves were cultured on nutrient agar, it was observed that the chloroplast replication occurred without cell enlargement regardless of the developmental stage of leaves. This implies that cell enlargement is not an essential factor for the chloroplast replication, but one of the environmental factors affecting it. Light is essential for the chloroplast replication which response to the light intensity. In the dark, there was little increase in chloroplast number per cell. With a light intensity of 50 lux, the increase rate of chloroplast number per cell was about half of that with 3,000 lux. Day length also affected significantly the chloroplast replication.  相似文献   

3.
The influence of varied concentrations of sucrose and ammonical (NH4+) nitrogen on in vitro induction and expression of anthocyanin pigments from Rosa hybrida cv. ‘Pusa Ajay’ was investigated. Of two explants (petal and leaf discs) selected and cultured under two different conditions (light and dark), leaf discs were found to be most suitable for callus initiation. Profuse and early callus induction was observed when leaf discs of rose were cultured under total dark conditions on solid Murashige and Skoog (MS) medium supplemented with 4.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Early pigment initiation, enhancement and maximum anthocyanin production from calluses were recorded when leaf discs were cultured on Euphorbia millii (EM) medium supplemented with 7% sucrose compared with calluses cultured at 4% sucrose concentration under 16/8 h (light/dark) photoperiod regime. Reducing the concentration of NH4+ nitrogen in the solid MS medium led to slight improvement in anthocyanin production in rose leaf calluses.  相似文献   

4.
Exogenously supplied indole-3-acetic acid (IAA) stimulated ethylene production in tobacco (Nicotiana glauca) leaf discs but not in those of sugar beet (Beta vulgaris L.). The stimulatory effect of IAA in tobacco was relatively small during the first 24 hours of incubation but became greater during the next 24 hours. It was found that leaf discs of these two species metabolized [1-14C]IAA quite differently. The rate of decarboxylation in sugar beet discs was much higher than in tobacco. The latter contained much less free IAA but a markedly higher level of IAA conjugates. The major conjugate in the sugar beet extracts was indole-3-acetylaspartic acid, whereas tobacco extracts contained mainly three polar IAA conjugates which were not found in the sugar beet extracts. The accumulation of the unidentified conjugates corresponded with the rise of ethylene production in the tobacco leaf discs. Reapplication of all the extracted IAA conjugates resulted in a great stimulation of ethylene production by tobacco leaf discs which was accompanied by decarboxylation of the IAA conjugates. The results suggest that in tobacco IAA-treated leaf discs the IAA conjugates could stimulate ethylene production by a slow release of free IAA. The inability of the exogenously supplied IAA to stimulate ethylene production in the sugar beet leaf discs was not due to a deficiency of free IAA within the tissue but rather to the lack of responsiveness of this tissue to IAA, probably because of an autoinhibitory mechanism existing in the sugar beet leaf discs.  相似文献   

5.
Development of the primary bean leaf in the dark and under continuous white light was studied during 14 days after sowing. The increase in surface area of the blade is the result of a number of sequential processes. Both in the darkness and under illumination, leaf growth is characterized by an initial cell enlargement followed by intensive cell division. Cell division in etiolated leaves continues for one day longer than in illuminated ones, but it proceeds at a slower rate. Mature leaves grown under white light undergo a phase of cell enlargement after cell division has stopped. This increases their surface area up to 800 times when compared with the blade area of the embryo. This enlargement phase is almost absent in dark-grown seedlings. Consequently the blade area of etiolated leaves is only 50 times that of the embryonic state. Thus light appears to have a dual effect on leaf development: it activates cell division and induces cell expansion.  相似文献   

6.
应用基因突变技术,在烟草黄矮双生病毒(Tobacoyelowdwarfgeminivirus,简称TobYDV)基因组的正义和反义链引入或缺失碱基,从而构建成一系列移码突变体。这些突变体在个别感染的情况下,全部丧失了系统侵染三生烟植株的能力,但是,成对地进行接种,能发生持久的互补作用,重新获得系统侵染的能力。突变体的互补作用发生在重组之前。在个别感染的叶块组织中,各种反义链突变体丧失了复制能力,然而,突变体V1-、V2-和V1-V2-能高度复制,表明反义链读码框编码产物为复制所必需,V1和V2读码框编码产物与复制无关,而为病毒的转移所必需。从V1-和V2-转化叶块中再生转基因植株,发现V1-和V2-都能在植株中维持复制,但是,只有V1-引起典型的病症,表明V1编码产物与病症出现无关。这些结果将为发展TobYDV为载体,在寄主植物中高度复制和表达外源基因提供依据。  相似文献   

7.
The effect of spermine on photochemical activity and polypeptide composition of chloroplasts from barley leaf discs during senescence in the dark was studied. Chloroplast membranes did not show photosystem II activity after spermine treatment when water was the electron donor, but in the presence of diphenylcarbazide, this activity was observed. The diphenylcarbazide-stimulated photoreduction of dichloroindophenol was 3-fold greater in leaf discs incubated for 72 hours in spermine than in water. Photosystem I activity was reduced by about 90% within the first 24 hours in the spermine-treated samples. This reduction, however, was not due to a decrease in the photosynthetic unit size. A preferential loss of polypeptides other than those associated with photosystem II was observed during senescence of the leaf discs in water, but this loss was reduced by spermine. Spermine treatment also prevented the appearance of several additional chlorophyll proteins found in the controls during senescence. The results have been interpreted on the basis of the interaction of spermine with thylakoid membranes resulting in stabilization of membrane function during senescence.  相似文献   

8.
Turgeon R  Gowan E 《Plant physiology》1990,94(3):1244-1249
Phloem loading in Coleus blumei Benth. leaves cannot be explained by carrier-mediated transport of export sugar from the apoplast into the sieve element-companion cell complex, the mechanism by which sucrose is thought to load in other species that have been studied in detail. Uptake profiles of the export sugars sucrose, raffinose, and stachyose into leaf discs were composed of two components, one saturable and the other not. Saturable (carrier-mediated) uptake of all three sugars was almost completely eliminated by the inhibitor p-chloromercuribenzenesulfonic acid (PCMBS). However, when PCMBS was introduced by transpiration into mature leaves it did not prevent accumulation of 14C-photosynthate in minor veins or translocation of labeled photosynthate from green to nonchlorophyllous regions of the leaf following exposure to 14CO2. The efficacy of introducing inhibitor solutions in the transpiration stream was proven by observing saffranin O and calcofluor white movement in the minor veins and leaf apoplast. PCMBS introduced by transpiration completely inhibited phloem loading in tobacco leaves. Phloem loading in C. blumei was also studied in plasmolysis experiments. The carbohydrate content of leaves was lowered by keeping plants in the dark and then increased by exposing them to light. The solute level of intermediary cells increased in the light (phloem loading) in both PCMBS-treated and control tissues. A mechanism of symplastic phloem loading is proposed for species that translocate the raffinose series of oligosaccharides.  相似文献   

9.
Olisthodiscus luteus is a unicellular biflagellate alga which contains many small discoidal chloroplasts. This naturally wall-less organism can be axenically maintained on a defined nonprecipitating artificial seawater medium. Sufficient light, the presence of bicarbonate, minimum mechanical turbulence, and the addition of vitamin B12 to the culture medium are important factors in the maintenance of a good growth response. Cells can be induced to divide synchronously when subject to a 12-hour light/12-hour dark cycle. The chronology of cell division, DNA synthesis, and plastid replication has been studied during this synchronous growth cycle. Cell division begins at hour 4 in the dark and terminates at hour 3 in the light, whereas DNA synthesis initiates 3 hours prior to cell division and terminates at hour 10 in the dark. Synchronous replication of the cell's numerous chloroplasts begins at hour 10 in the light and terminates almost 8 hours before cell division is completed. The average number of chloroplasts found in an exponentially growing synchronous culture is rather stringently maintained at 20 to 21 plastids per cell, although a large variability in plastid complement (4-50) is observed within individual cells of the population. A change in the physiological condition of an Olisthodiscus cell may cause an alteration of this chloroplast complement. For example, during the linear growth period, chloroplast number is reduced to 14 plastids per cell. In addition, when Olisthodiscus cells are grown in medium lacking vitamin B12, plastid replication continues in the absence of cell division thereby increasing the cell's plastid complement significantly.  相似文献   

10.
The effect of kinetin on aspects of the metabolism of discs cut from mature leaves of Nicotiana tabacum and cultured in the light on agar containing mineral salts and sucrose was studied. In the first few days of culture there was a rapid decline in chlorophyll content. Discs treated with kinetin in the light began to resynthesise chlorophyll after 3–4 days and this was correlated with chloroplast replication. Kinetin promoted chloroplast replication but was not always essential. An increase in fresh weight also occurred, due mainly to cell expansion. Nitrate reductase activity increased rapidly during the first few hours after placing discs on the culture medium but kinetin had no effect on this reponse. Subsequently there were dramatic increases in RNA and protein content which were largely independent of kinetin. Gel electrophoresis showed that cytoplasmic and chloroplast ribosomal RNA and a large amount of soluble RNA were synthesised during culture of the discs. These results are discussed in relation to the role of kinetin in delaying leaf sensescence.  相似文献   

11.
The effect of benzyladenine (BA) on the diurnal changes in DNAand Chl contents per chloroplast and chloroplast replicationin primary leaves of bean plants (Phaseolus vulgaris L.) grownunder a 16 h light/8 h dark cycle was studied. Experiments weremade on primary leaves in the early expansion phase, where celldivision had been completed but chloroplasts were replicating.In untreated controls, chloroplast number, Chl content and freshweight per leaf showed daily periodic changes. Chl content perchloroplast increased in the light period every day, and freshweight per leaf increased most rapidly in the early dark period.Chloroplast number per leaf increased rapidly in the early darkperiod on day 9, though the increase began a little earlierand was less sharp on days 8 and 10. During these periods, DNAcontent per chloroplast was decreasing due to chloroplast divisionas chloroplast DNA (ctDNA) per leaf remained unchanged throughoutthe experimental period. BA induced increases in Chi contentper chloroplast, ctDNA content and fresh weight per leaf within6 h of its application, regardless of whether it was appliedat or 10 h after the beginning of the light period. Applicationof BA at 10 h in the light period shifted the start of chloroplastreplication by 6 h compared to that in untreated controls. However,when BA was applied at the beginning of illumination, the startof chloroplast replication showed the same relative change intime as above. 5-Fluorodeoxyuridine (5-FdU) promptly preventedBA-induced increase in Chl content and chloroplast number perleaf as well as ctDNA content per leaf.  相似文献   

12.
The host-specific toxin produced by Helminthosporium maydis, race T, causes 50% inhibition of dark fixation of 14CO2 by leaf discs of susceptible (Texas male sterile) corn when it is diluted to approximately 1/10,000 of the volume of the original fungus culture filtrate. Dilutions of 1/10 or less are required for equivalent inhibition of discs prepared from resistant (N) corn. Root growth and photosynthesis were considerably less sensitive (dilution values 1/3000 and 1/1200, respectively), as was leakage of 14C induced by toxin from preloaded discs. Based on literature values for dilutions causing ion leakage or inhibition of mitochondrial oxidation, toxin dilutions several orders of magnitude greater bring about inhibition of dark CO2 fixation. Preincubation of discs in light increased sensitivity of dark fixation to toxin and an effect of light on symptom development was shown. Phosphoenolypruvate carboxylase activity in extracts of roots or leaves was not affected by toxin nor was the enzyme level altered in excised leaves treated with toxin. Inhibition of dark fixation of CO2 provides a bioassaay for race T toxin which is both reliable and rapid.  相似文献   

13.
The effect of light and CO2 on both the endogenous and 1-aminocyclopropane-1-carboxylic acid (ACC)-dependent ethylene evolution from metabolically active detached leaves and leaf discs of Gomphrena globosa L. is reported. Treatment with varying concentrations of ACC did not appear to inhibit photosynthesis, respiration, or stomatal behavior. In all treatments, more ethylene was released into a closed flask from ACC-treated tissue, but the pattern of ethylene release with respect to light/dark/CO2 treatments was the same.

Leaf tissue in the light with a source of CO2 sufficient to maintain photosynthesis always generates 3 to 4 times more ethylene than tissue in the dark. Conversely, the lowest rate of ethylene release occurs when leaf tissue is illuminated and photosynthetic activity depletes the CO2 to the compensation point. Ethylene release in the dark is also stimulated by CO2 either added to the flask as bicarbonate or generated by dark respiration. Ethylene release increases dramatically and in parallel with photosynthesis at increasing light intensities in this C4 plant. Ethylene release appears dependent on CO2 both in the light and in the dark. Therefore, it is suggested that the important factor regulating the evolution of ethylene gas from leaves of Gomphrena may be CO2 metabolism rather than light per se.

  相似文献   

14.
Boyer JS 《Plant physiology》1970,46(2):233-235
Rates of photosynthesis, dark respiration, and leaf enlargement were studied in soil-grown corn (Zea mays), soybean (Glycine max), and sunflower (Helianthus annuus) plants at various leaf water potentials. As leaf water potentials decreased, leaf enlargement was inhibited earlier and more severely than photosynthesis or respiration. Except for low rates of enlargement, inhibition of leaf enlargement was similar in all three species, and was large when leaf water potentials dropped to about −4 bars.  相似文献   

15.
Garber MP 《Plant physiology》1977,59(5):981-985
The effects of chilling temperatures, in light or dark, on the isolated thylakoids and leaf discs of cucumber (Cucumis sativa L. “Marketer”) and spinach (Spinacia oleracea L. “Bloomsdale”) were studied. The pretreatment of isolated thylakoids and leaf discs at 4 C in the dark did not affect the phenazine methosulfate-dependent phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, or chlorophyll content. Exposure of cucumber cotyledon discs and isolated thylakoids of cucumber and spinach to 4 C in light resulted in a rapid inactivation of the thylakoids. The sequence of activities or components lost during inactivation (starting with the most sensitive) are: phenazine methosulfate-dependent cyclic phosphorylation, proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity, and chlorophyll. The rate of loss of proton uptake, osmotic response to sucrose, Ca2+-dependent ATPase activity and chlorophyll is similar for isolated cucumber and spinach thylakoids, whereas spinach thylakoids are more resistant to the loss of phenazine methosulfate-dependent phosphorylation. The thylakoids of spinach leaf discs were unaffected by exposure to 4 C in light. The results question whether the extreme resistance of spinach thylakoids treated in vivo is solely a function of the chloroplast thylakoid membranes and establish the validity of using in vitro results to make inferences about cucumber thylakoids treated in vivo at 4 C in light.  相似文献   

16.
The capacity of tobacco (Nicotiana rustica) leaf discs to incorporate l-leucine 14C into proteins was measured. Leaf discs were obtained from plants which experienced soil water depletion, or which were exposed to a saline or osmotic stress in the root medium. The stresses were brief of relatively short duration and water potential did not decrease below 4 bars in the root media. Leaf discs were sampled 2 hours after stress removal, achieved by reirrigation, or replacement of saline and osmotic solutions with normal nutrient solution. Plants were always turgid when leaves were sampled.  相似文献   

17.
Ching Huei Kao  Shang Fa Yang 《Planta》1982,155(3):261-266
The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of endogenous ethylene production in the light increased markedly, to a level which was even higher than that produced in the dark. Carbon dioxide, however, had no appreciable effect of leaf segments incubated in the dark. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was not significantly affected by lightdark or CO2 treatment, indicating that dark treatment or CO2exerted its effect by promoting the conversion of ACC to ethylene. This conclusion was supported by the observations that the rate of conversion of exogenously applied ACC to ethylene was similarly inhibited by light, and this inhibition was relieved in the presence of CO2. Similar results were obtained with tobacco leaf discs. The concentrations of CO2 giving half-maximal activity was about 0.06%, which was only slightly above the ambient level of 0.03%. The modulation of ACC conversion to ethylene by CO2 or light in detached leaves of both rice and tobacco was rapid and fully reversible, indicating that CO2 regulates the activity, but not the synthesis, of the enzyme converting ACC to ethylene. Our results indicate that light inhibition of ethylene production in detached leaves is mediated through the internal level of CO2, which directly modulates the activity of the enzyme converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid Recipient of a Republic of China National Science Council Fellowship  相似文献   

18.
Variables Affecting the CO(2) Compensation Point   总被引:5,自引:5,他引:0       下载免费PDF全文
Some factors influencing dark respiration, photorespiration, and photosynthesis were examined for their effect on the CO2 compensation point (70 μl/l) of detached soybean (Glycine max) leaf discs. A higher compensation point in young leaves decreased to the constant value after leaf expansion and maturation, but increased again during senescence. The compensation point was 40 to 50% higher in plants grown in the summer than in the winter. The compensation point and dark respiration increased with temperatures above 17 C. Below 17 C dark respiration continued to decrease, but the compensation point did not decrease further. Increasing light intensities did not affect the compensation point.  相似文献   

19.
Induction of ethylene biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) leaf discs by the ethylene biosynthesis-inducing xylanase (EIX) isolated from Cellulysin or xylan-grown cultures of Trichoderma viride was dependent upon the concentration of xylanase applied and upon the length of incubation. Arrhenius activation energies of 9,100 and 10,500 calories for the Cellulysin and T. viride EIX xylanase activities, respectively, were derived from the Km and Vmax values determined for each enzyme at several temperatures. The two xylanases digested xylan in a strictly endo fashion, releasing neither xylobiose nor free xylose, and no debranching activity was associated with either enzyme. The xylanases released polysaccharides from ground corn cobs, but little or no carbohydrate was released from tobacco mesophyll cell walls incubated with EIX. No heat-stable products capable of inducing ethylene biosynthesis in tobacco leaf discs were found in EIX digests of purified xylans.  相似文献   

20.
Tom Nielsen  Mark Stitt 《Planta》2001,214(1):106-116
The role of pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) in developing leaves was studied using wild-type tobacco (Nicotiana tabacum L.) and transformants with decreased expression of PFP. (i) The leaf base, which is the youngest and most actively growing area of the leaf, had 2.5-fold higher PFP activity than the leaf tip. T3 transformants, with a 56-95% decrease in PFP activity in the leaf base and an 87-97% decrease in PFP activity in the leaf tip, were obtained by selfing and re-selfing individuals from two independent transformant lines. (ii) Other enzyme activities also showed a gradient from the leaf base to the leaf tip. There was a decrease in PFK and an increase in fructose-6-phosphate,2-kinase and plastidic fructose-1, 6-bisphosphatase, whereas cytosolic fructose-1,6-bisphosphatase activity was constant. None of these gradients was altered in the transformants. (iii) Fructose-2,6-bisphosphate (Fru2,6bisP) levels were similar at the base and tip of wild-type leaves in the dark. Illumination lead to a decrease in Fru2,6bisP at the leaf tip and an increase in Fru2,6bisP at the leaf base. Compared to wild-type plants, transformants with decreased expression of PFP had up to 2-fold higher Fru2,6bisP at the leaf tip in the dark, similar levels at the leaf tip in the light, 15-fold higher levels at the leaf base in the dark, and up to 4-fold higher levels at the leaf base in the light. (iv) To investigate metabolic fluxes, leaf discs were supplied with 14CO2 in the light or [14C]glucose in the light or the dark. Discs from the leaf tip had higher rates of photosynthesis than discs from the leaf base, whereas the rate of glucose uptake and metabolism was similar in both tissues. Significantly less label was incorporated into neutral sugars, and more into anionic compounds, cell wall and protein, and amino acids in discs from the leaf base. Metabolism of 14CO2 and [14C]glucose in transformants with low PFP was similar to that in wild-type plants, except that synthesis of neutral sugars from 14CO2 was slightly reduced in discs from the base of the leaf. (v) These results reveal that the role of PFP in the growing cells in the base of the leaf differs from that in mature leaf tissue. The increase in Fru2,6bisP in the light and the high activity of PFP relative to cytosolic fructose-1,6-bisphosphatase in the base of the leaf implicate PFP in the synthesis of sucrose in the light, as well as in glycolysis. The large increase in Fru2,6bisP at the base of the leaf of transformants implies that PFP plays a more important role in metabolism at the leaf base than in mature leaf tissue. Nevertheless, there were no major changes in carbon fluxes, or leaf or plant growth in transformants with below 10% of the wild-type PFP activity at the leaf base, implying that large changes in expression can be compensated by changes in Fru2,6-bisP, even in growing tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号