共查询到20条相似文献,搜索用时 0 毫秒
1.
Van Komen S Petukhova G Sigurdsson S Sung P 《The Journal of biological chemistry》2002,277(46):43578-43587
Saccharomyces cerevisiae Rad51, Rad54, and replication protein A (RPA) proteins work in concert to make heteroduplex DNA joints during homologous recombination. With plasmid length DNA substrates, maximal DNA joint formation is observed with amounts of Rad51 substantially below what is needed to saturate the initiating single-stranded DNA template, and, relative to Rad51, Rad54 is needed in only catalytic quantities. RPA is still indispensable for optimal reaction efficiency, but its role in this instance is to sequester free single-stranded DNA, which otherwise inhibits Rad51 and Rad54 functions. We also demonstrate that Rad54 helps overcome various reaction constraints in DNA joint formation. These results thus shed light on the function of Rad54 in the Rad51-mediated homologous DNA pairing reaction and also reveal a novel role of RPA in the presynaptic stage of this reaction. 相似文献
2.
Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA strand that is displaced by DNA strand exchange by Rad51 and RPA, to a second ssDNA strand. An RPA that is recombination-deficient (RPA(rfa1-t11)) failed to support annealing, explaining its in vivo phenotype. Escherichia coli RecO and SSB proteins, which are functional homologues of Rad52 and RPA, also facilitated the same reaction, demonstrating its conserved nature. We also demonstrate that the two activities of Rad52, recruiting Rad51 and annealing DNA, are coordinated in DNA strand exchange and second ssDNA capture. 相似文献
3.
The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction. 相似文献
4.
Rad52 protein plays a central role in double strand break repair and homologous recombination in Saccharomyces cerevisiae. We have identified a new mechanism by which Rad52 protein stimulates Rad51 protein-promoted DNA strand exchange. This function of Rad52 protein is revealed when subsaturating amounts (relative to the single-stranded DNA concentration) of replication protein-A (RPA) are used. Under these conditions, Rad52 protein is needed for extensive DNA strand exchange. Interestingly, in this new role, Rad52 protein neither acts simply as a single strand DNA-binding protein per se nor, in contrast to its previously identified stimulatory roles, does it require physical interaction with RPA because it can be substituted by the Escherichia coli single strand DNA-binding protein. We propose that Rad52 protein acts by stabilizing the Rad51 presynaptic filament. 相似文献
5.
6.
Rad51 protein controls Rad52-mediated DNA annealing 总被引:1,自引:0,他引:1
Wu Y Kantake N Sugiyama T Kowalczykowski SC 《The Journal of biological chemistry》2008,283(21):14883-14892
In Saccharomyces cerevisiae, Rad52 protein plays an essential role in the repair of DNA double-stranded breaks (DSBs). Rad52 and its orthologs possess the unique capacity to anneal single-stranded DNA (ssDNA) complexed with its cognate ssDNA-binding protein, RPA. This annealing activity is used in multiple mechanisms of DSB repair: single-stranded annealing, synthesis-dependent strand annealing, and cross-over formation. Here we report that the S. cerevisiae DNA strand exchange protein, Rad51, prevents Rad52-mediated annealing of complementary ssDNA. Efficient inhibition is ATP-dependent and involves a specific interaction between Rad51 and Rad52. Free Rad51 can limit DNA annealing by Rad52, but the Rad51 nucleoprotein filament is even more effective. We also discovered that the budding yeast Rad52 paralog, Rad59 protein, partially restores Rad52-dependent DNA annealing in the presence of Rad51, suggesting that Rad52 and Rad59 function coordinately to enhance recombinational DNA repair either by directing the processed DSBs to repair by DNA strand annealing or by promoting second end capture to form a double Holliday junction. This regulation of Rad52-mediated annealing suggests a control function for Rad51 in deciding the recombination path taken for a processed DNA break; the ssDNA can be directed to either Rad51-mediated DNA strand invasion or to Rad52-mediated DNA annealing. This channeling determines the nature of the subsequent repair process and is consistent with the observed competition between these pathways in vivo. 相似文献
7.
The RAD52 gene is essential for homology-dependent repair of double-strand breaks in Saccharomyces cerevisiae. Rad52 forms complexes with Rad51, replication protein A (RPA) or Rad59 and its presence is essential for the formation of Rad51-Rad52-Rad59 and RPA-Rad52-Rad59 complexes. The N-terminal region of Rad52, which is required for self-interaction to form a ring structure, is required for interaction with Rad59. Rad59 also shows self-interaction suggesting the formation of heteromeric and homomeric rings of Rad52 and Rad59. In wild-type cells, we propose the Rad51-Rad52-Rad59 complex is involved in conservative recombination events, including gene conversion and reciprocal recombination, whereas the Rad52-Rad59 complex participates in single-strand annealing. 相似文献
8.
Physical interaction between replication protein A and Rad51 promotes exchange on single-stranded DNA 总被引:1,自引:0,他引:1
Replication protein A (RPA) is displaced from single-stranded DNA (ssDNA) by Rad51 during the initiation of homologous recombination. Interactions between these proteins have been reported, but the functional significance of the direct RPA-Rad51 interaction has yet to be elucidated. We have identified and characterized the interaction between DNA-binding domain A of RPA (RPA70A) and the N-terminal domain of Rad51 (Rad51N). NMR chemical shift mapping showed that Rad51N binds to the ssDNA-binding site of RPA70A, suggesting a competitive mechanism for the displacement of RPA from ssDNA by Rad51. A structure of the RPA70A-Rad51N complex was generated by experimentally guided modeling and then used to design mutations that disrupt the binding interface. Functional ATP hydrolysis assays were performed for wild-type Rad51 and a mutant defective in binding RPA. Rates of RPA displacement for the mutant were significantly below those of wild-type Rad51, suggesting that a direct RPA-Rad51 interaction is involved in displacing RPA in the initiation stage of genetic recombination. 相似文献
9.
Solinger JA Lutz G Sugiyama T Kowalczykowski SC Heyer WD 《Journal of molecular biology》2001,307(5):1207-1221
RAD54 is an important member of the RAD52 group of genes that carry out recombinational repair of DNA damage in the yeast Saccharomyces cerevisiae. Rad54 protein is a member of the Snf2/Swi2 protein family of DNA-dependent/stimulated ATPases, and its ATPase activity is crucial for Rad54 protein function. Rad54 protein and Rad54-K341R, a mutant protein defective in the Walker A box ATP-binding fold, were fused to glutathione-S-transferase (GST) and purified to near homogeneity. In vivo, GST-Rad54 protein carried out the functions required for methyl methanesulfonate sulfate (MMS), UV, and DSB repair. In vitro, GST-Rad54 protein exhibited dsDNA-specific ATPase activity. Rad54 protein stimulated Rad51/Rpa-mediated DNA strand exchange by specifically increasing the kinetics of joint molecule formation. This stimulation was accompanied by a concurrent increase in the formation of heteroduplex DNA. Our results suggest that Rad54 protein interacts specifically with established Rad51 nucleoprotein filaments before homology search on the duplex DNA and heteroduplex DNA formation. Rad54 protein did not stimulate DNA strand exchange by increasing presynaptic complex formation. We conclude that Rad54 protein acts during the synaptic phase of DNA strand exchange and after the formation of presynaptic Rad51 protein-ssDNA filaments. 相似文献
10.
11.
Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. 总被引:16,自引:7,他引:16
下载免费PDF全文

The genes of the Saccharomyces cerevisiae RAD52 epistasis group are required for the repair of ionizing radiation-induced DNA damage. Three of these genes, RAD51, RAD55, and RAD57, have been identified as putative RecA homologs. An important feature of RecA is its ability to bind and hydrolyze ATP. RAD55 and RAD57 contain putative nucleotide binding motifs, and the importance of these motifs was determined by constructing site-directed mutations of the conserved lysine residue within the Walker A-box. Changing the lysine residue to arginine or alanine resulted in a mutant phenotype in DNA repair and sporulation for Rad55 but not for Rad57. Protein-protein interactions among Rad51, Rad55, and Rad57 were tested for by the two-hybrid system. Rad55 was shown to interact with Rad51 and Rad57 but not with itself. Additionally, no interaction between Rad57 and Rad51 or between Rad57 and itself was detected. Consistent with the hypothesis that Rad55 and Rad57 may function within, or stabilize, a protein complex, we found that RAD51 expressed from a high-copy-number plasmid suppresses the DNA repair defect of strains carrying rad55 and rad57 mutations. These data, in conjunction with other reports, demonstrate the importance of protein-protein interactions in the process of DNA repair. 相似文献
12.
The Rad51 protein of Saccharomyces cerevisiae, like its bacterial counterpart RecA, promotes strand exchange between circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in vitro. However, the two proteins differ in the requirement for initiating joint molecules and in the polarity of branch migration. Whereas RecA initiates joint molecules from any type of ends on the dsDNA and branch migration proceeds exclusively in the 5'- to 3'-direction with respect to the single strand DNA substrate, initiation mediated by Rad51 requires a complementary 3' or 5' overhanging end of the linear dsDNA and branch migration proceeds in either direction. Here we report that the rates of Rad51-mediated branch migration in either the 5'- to 3'- or 3'- to 5'-directions are affected to the same extent by temperature and MgCl(2). Furthermore, branch migration in both directions is equally impeded by insertions of non-homologous sequences in the dsDNA, inserts of 6 base pairs or more being completely inhibitory. We have also found that the preference of strand exchange in the 5'- to 3'-direction does not change if RPA is replaced by Escherichia coli SSB or T4 gene 32 proteins, suggesting that the preference for the direction of strand exchange is intrinsic to Rad51. Based on these results, we conclude that Rad51-promoted branch migration in either direction occurs fundamentally by the same mechanism, quite probably by stabilizing successively formed heteroduplex base pair. 相似文献
13.
The Rad51 nucleoprotein filament mediates DNA strand exchange, a key step of homologous recombination. This activity is stimulated by replication protein A (RPA), but only when RPA is introduced after Rad51 nucleoprotein filament formation. In contrast, RPA inhibits Rad51 nucleoprotein complex formation by prior binding to single-stranded DNA (ssDNA), but Rad52 protein alleviates this inhibition. Here we show that Rad51 filament formation is simultaneous with displacement of RPA from ssDNA. This displacement is initiated by a rate-limiting nucleation of Rad51 protein onto ssDNA complex, followed by rapid elongation of the filament. Rad52 protein accelerates RPA displacement by Rad51 protein. This acceleration probably involves direct interactions with both Rad51 protein and RPA. Detection of a Rad52-RPA-ssDNA co-complex suggests that this co-complex is an intermediate in the displacement process. 相似文献
14.
Rad51 plays a key role in the repair of DNA double-strand breaks through homologous recombination, which is the central process in the maintenance of genomic integrity. Five paralogs of the human Rad51 gene (hRad51) have been identified to date, including hRad51B, hRad51C, hRad51D, Xrcc2 and Xrcc3. In searches of additional hRad51 paralogs, we identified a novel hRad51 variant that lacked the sequence corresponding to exon 9 (hRad51-Δex9). The expected amino acid sequence of hRad51-Δex9 showed a frame-shift at codon 259, which resulted in a truncated C-terminus. RT-PCR analysis revealed that both hRad51 and hRad51-Δex9 were prominently expressed in the testis, but that there were subtle differences in tissue specificity. The hRad51-Δex9 protein was detected as a 31-kDa protein in the testis and localized at the nucleus. In addition, the hRad51-Δex9 protein showed a DNA-strand exchange activity comparable to that of hRad51. Taken together, these results indicate that hRad51-Δex9 promotes homologous pairing and DNA strand exchange in the nucleus, suggesting that alternative pathways in hRad51- or hRad51-Δex9-dependent manners exist for DNA recombination and repair. 相似文献
15.
Biochemical analysis has shown that mammalian Rad51 and Rad52 interact and synergize in DNA recombination reactions in vitro, but these proteins have not been shown to function together in response to DNA damage in vivo. By analysis of murine cells expressing murine Rad52 tagged with green fluorescent protein (GFP)–Rad52, we now show that DNA damage causes Rad51 and GFP–Rad52 to colocalize in distinct nuclear foci. Cells expressing GFP–Rad52 show both increased survival and an increased number of Rad51 foci, raising the possibility that Rad52 is limiting for repair. These observations provide evidence of coordinated function of Rad51 and Rad52 in vivo and support the hypothesis that Rad52 plays an important role in the DNA damage response in mammalian cells. 相似文献
16.
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein–DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a prokaryotic organism. The Sulfolobus solfataricus Rad54 (SsoRad54) protein is a double-strand DNA-dependent ATPase that can alter the topology of duplex DNA. Like its eukaryotic homolog, it interacts directly with the S. solfataricus Rad51 homologue, SsoRadA, to stimulate DNA strand exchange. Confirmation of this protein as an authentic Rad54 homolog establishes an essential phylogenetic bridge for identifying Rad54 homologs in the archaeal and bacterial domains. 相似文献
17.
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential for DNA replication, and plays important roles in DNA repair and DNA recombination. Rad52 and RPA, along with other members of the Rad52 epistasis group of genes, repair double-stranded DNA breaks (DSBs). Two repair pathways involve RPA and Rad52, homologous recombination and single-strand annealing. Two binding sites for Rad52 have been identified on RPA. They include the previously identified C-terminal domain (CTD) of RPA32 (residues 224-271) and the newly identified domain containing residues 169-326 of RPA70. A region on Rad52, which includes residues 218-303, binds RPA70 as well as RPA32. The N-terminal region of RPA32 does not appear to play a role in the formation of the RPA:Rad52 complex. It appears that the RPA32CTD can substitute for RPA70 in binding Rad52. Sequence homology between RPA32 and RPA70 was used to identify a putative Rad52-binding site on RPA70 that is located near DNA-binding domains A and B. Rad52 binding to RPA increases ssDNA affinity significantly. Mutations in DBD-D on RPA32 show that this domain is primarily responsible for the ssDNA binding enhancement. RPA binding to Rad52 inhibits the higher-order self-association of Rad52 rings. Implications for these results for the "hand-off" mechanism between protein-protein partners, including Rad51, in homologous recombination and single-strand annealing are discussed. 相似文献
18.
Louise H. Fornander Axelle Renodon-Cornière Naoyuki Kuwabara Kentaro Ito Yasuhiro Tsutsui Toshiyuki Shimizu Hiroshi Iwasaki Bengt Nordén Masayuki Takahashi 《Nucleic acids research》2014,42(4):2358-2365
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction. 相似文献
19.
Chi P Kwon Y Seong C Epshtein A Lam I Sung P Klein HL 《The Journal of biological chemistry》2006,281(36):26268-26279
The Saccharomyces cerevisiae RDH54-encoded product, a member of the Swi2/Snf2 protein family, is needed for mitotic and meiotic interhomologue recombination and DNA repair. Previous biochemical studies employing Rdh54 purified from yeast cells have shown DNA-dependent ATP hydrolysis and DNA supercoiling by this protein, indicative of a DNA translocase function. Importantly, Rdh54 physically interacts with the Rad51 recombinase and promotes D-loop formation by the latter. Unfortunately, the low yield of Rdh54 from the yeast expression system has greatly hampered the progress on defining the functional interactions of this Swi2/Snf2-like factor with Rad51. Here we describe an E. coli expression system and purification scheme that together provide milligram quantities of nearly homogeneous Rdh54. Using this material, we demonstrate that Rdh54-mediated DNA supercoiling leads to transient DNA strand opening. Furthermore, at the expense of ATP hydrolysis, Rdh54 removes Rad51 from DNA. We furnish evidence that the Rad51 binding domain resides within the N terminus of Rdh54. Accordingly, N-terminal truncation mutants of Rdh54 that fail to bind Rad51 are also impaired for functional interactions with the latter. Interestingly, the rdh54 K352R mutation that ablates ATPase activity engenders a DNA repair defect even more severe than that seen in the rdh54Delta mutant. These results provide molecular information concerning the role of Rdh54 in homologous recombination and DNA repair, and they also demonstrate the functional significance of Rdh54.Rad51 complex formation. The Rdh54 expression and purification procedures described here should facilitate the functional dissection of this DNA recombination/repair factor. 相似文献
20.
Rad51 protein forms nucleoprotein filaments on single-stranded DNA (ssDNA) and then pairs that DNA with the complementary strand of incoming duplex DNA. In apparent contrast with published results, we demonstrate that Rad51 protein promotes an extensive pairing of long homologous DNAs in the absence of replication protein A. This pairing exists only within the Rad51 filament; it was previously undetected because it is lost upon deproteinization. We further demonstrate that RPA has a critical postsynaptic role in DNA strand exchange, stabilizing the DNA pairing initiated by Rad51 protein. Stabilization of the Rad51-generated DNA pairing intermediates can be can occur either by binding the displaced strand with RPA or by degrading the same DNA strand using exonuclease VII. The optimal conditions for Rad51-mediated DNA strand exchange used here minimize the secondary structure in single-stranded DNA, minimizing the established presynaptic role of RPA in facilitating Rad51 filament formation. We verify that RPA has little effect on Rad51 filament formation under these conditions, assigning the dramatic stimulation of strand exchange nevertheless afforded by RPA to its postsynaptic function of removing the displaced DNA strand from Rad51 filaments. 相似文献