首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under optimal conditions, most of the light energy is used to drive electron transport. However, when the light energy exceeds the capacity of photosynthesis, the overall photosynthetic efficiency drops down. The present study investigated the effects of high light on rice photooxidation-prone mutant 812HS, characterized by a mutation of leaf photooxidation 1 gene, and its wild type 812S under field conditions. Our results showed no significant difference between 812HS and 812S before exposure to high sunlight. However, during exposure to high light, shoot tips of 812HS turned yellow and their chlorophyll (Chl) content decreased. Transmission electron microscopy showed that photooxidation resulted in significant damage of chloroplast ultrastructure. It was confirmed also by inhibited photophosphorylation and reduced ATP content. The decreased coupling factor of ATP, Ca2+-ATPase and Mg2+-ATPase activities also verified these results. Further, significantly enhanced activities of antioxidative enzymes were observed during photooxidation. Malondialdehyde, hydrogen peroxide, and the superoxide generation rates also increased. Chl a fluorescence analysis found that the performance index and maximum quantum yield of PSII declined on August 4, 20 days after high-light treatment. Net photosynthetic rate also decreased and substomatal CO2 concentration increased in 812HS at the same time. In conclusion, our findings indicated that excessive energy triggered the production of toxic reactive oxygen species and promoted lipid peroxidation in 812HS plants, causing severe damage to cell membranes, degradation of photosynthetic pigments and proteins, and ultimately inhibition of photosynthesis.  相似文献   

2.
Photooxidative stress in plants   总被引:36,自引:0,他引:36  
The light-dependent generation of active oxygen species is termed photooxidative stress. This can occur in two ways: (1) the donation of energy or electrons directly to oxygen as a result of photosynthetic activity; (2) exposure of tissues to ultraviolet irradiation. The light-dependent destruction of catalase compounds the problem. Although generally detrimental to metabolism, superoxide and hydrogen peroxide may serve useful functions if rigorously controlled and compartmentalised. During photosynthesis the formation of active oxygen species is minimised by a number of complex and refined regulatory mechanisms. When produced, active oxygen species are eliminated rapidly by efficient antioxidative systems. The chloroplast is able to use the production and destruction of hydrogen peroxide to regulate the thermal dissipation of excess excitation energy. This is an intrinsic feature of the regulation of photosynthetic electron transport. Photoinhibition and photooxidation only usually occur when plants are exposed to stress. Active oxygen species are part of the alarm-signalling processes in plants. These serve to modify metabolism and gene expression so that the plant can respond to adverse environmental conditions, invading organisms and ultraviolet irradiation. The capacity of the antioxidative defense system is often increased at such times but if the response is not sufficient, radical production will exceed scavenging and ultimately lead to the disruption of metabolism. Oxidative damage arises in high light principally when the latter is in synergy with additional stress factors such as chilling temperatures or pollution. Environmental stress can modify the photooxidative processes in various ways ranging from direct involvement in light-induced free radical formation to the inhibition of metabolism that renders previously optimal light levels excessive. It is in just such situations that the capacity for the production of active oxygen species can exceed that for scavenging by the antioxidative defense systems. The advent of plant transformation, however, may have placed within our grasp the possibility of engineering greater stress tolerance in plants by enhancement of the antioxidative defence system.  相似文献   

3.
The mechanisms of photoprotection of photosynthesis and dissipation of excitation energy in rice leaves in response to potassium (K) deficiency were investigated. Net photosynthetic rate and the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase decreased under K deficiency. Compared with the control, non-photochemical quenching of Chl fluorescence increased in K-deficient plant, whereas the efficiency of excitation transfer (F'(v)/F'(m)) and the photochemical quenching coefficient (q(P)) decreased. Thus, thermal dissipation of excitation energy increased as more excess electrons were accumulated in the photosynthetic chain. The electron transport rate through PSII (J(f)) was more sensitive to O2 concentration, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (J(g)/J(f)) was significantly decreased under K deficiency compared with the control. Furthermore, the alternative electron transport (J(a)/J(f)) was increased, indicating that a considerable amount of electrons had been transported to O2 during the water-water cycle in the K-deficient leaves. Although the fraction of electron transport to photorespiration (J(o)/J(f)) was also increased in the K-deficient leaves, it was less sensitive than that of the water-water cycle. With the generation of reactive oxygen species level, the activities of superoxide dismutase and ascorbate peroxidase, two of the key enzymes involved in scavenging of active oxygen species in the water-water cycle, also increased in K-deficient rice. Therefore, it is likely that a series of photoprotective mechanisms were initiated in rice plants in response to K deficiency and the water-water cycle might be critical for protecting photosynthetic apparatus under K deficiency in rice.  相似文献   

4.
Efficient photosynthesis is critical for plant survival and growth. When plant-absorbed light exceeds the overall rate of energy conversion, it will trigger photooxidation. In this study, we selected a photooxidation mutant 812HS, it was isolated from the progeny of japonica rice (Oryza sativa L.) 812S and shows leaf yellowing and hypersensitive to photooxidation. Chloroplast ultrastructure in the leaves of 812HS showed that photooxidation resulted in significant chloroplast damage compared with 812S for changes in gene expressions in response to photooxidation stress using next-generation sequencing technologies on an Illumina HiSeq 2000 platform. A total of 88508 and 88495 genes were identified from 812S and 812HS, respectively. Expressions of 1199 genes were significantly upregulated, while 1342 genes were remarkably downregulated in 812HS. These genes were notably enriched in the 21 KEGG pathways. Based on their expression patterns, several key pathways were identified to be involved in the photooxidation of 812HS. qRT-PCR analysis further confirmed the results of RNA-Seq. This study enabled us to integrate analysis of RNA-Seq in rice and offered a deeper insight into the molecular mechanisms in response to photo-oxidative stress and provided clues for further critical gene identification in the protective mechanisms against photooxidation.  相似文献   

5.
The effect of strong light in the presence of methyl viologen (MV) on the contents of souble protein and its free carbonyl, photosynthetic pigments, malondialdehyde (MDA), and ch]orophyil fluorescence parameters were investigated in the leaf discs from plants with different photosyn, thetic pathways. The photooxidafive degradation of soluble protein and ch]orophyll occurred after 1 h of treatment, and was accompanied by the increase of malondialdehyde content, and oxygen uptake in the light and dark, as well as the inactivation of PS Ⅱ in all test plants. Unlike the maize ( Zea mays ) and sugarcane ( Saccharum sinense Roxb. ) ( C4 plant ) or pineapple (Ananas comosus ( L. ) Mere. ) (CAM plant), a marked increase of carotenoid and non-photochemical chlorophyll fluorescence quenching(qN) was observed in peanut ( Arachis hypogaea L. ) leaves ( C3 plant), as the photochemical fluorescence quenching (qp) declined and Fo raised. It is suggested that photooxidafive stress induced the active dissipation of excessive excite energy by antenna quenching in C4 plant. The response of increasing 02 uptake in the dark was also found in C4 plants during photooxidation. However, the extents of protein and lipid destruction were larger in leaves of maize and sugarcane than in peanut leaves. Fo went up significantly as the C3 plant did, but qN dropped down to the lowest value (10% of control), which may regard as an obvious change of photooxidative damage in C4 plants. Among the three types of plants, the CAM plant, pineapple showed stronger antioxidative feature due to the relative small range of changes in the estimated items as compared with the control.  相似文献   

6.
Plants must regulate their use of absorbed light energy on a minute-by-minute basis to maximize the efficiency of photosynthesis and to protect photosystem II (PSII) reaction centers from photooxidative damage. The regulation of light harvesting involves the photoprotective dissipation of excess absorbed light energy in the light-harvesting antenna complexes (LHCs) as heat. Here, we report an investigation into the structural basis of light-harvesting regulation in intact spinach (Spinacia oleracea) chloroplasts using freeze-fracture electron microscopy, combined with laser confocal microscopy employing the fluorescence recovery after photobleaching technique. The results demonstrate that formation of the photoprotective state requires a structural reorganization of the photosynthetic membrane involving dissociation of LHCII from PSII and its aggregation. The structural changes are manifested by a reduced mobility of LHC antenna chlorophyll proteins. It is demonstrated that these changes occur rapidly and reversibly within 5 min of illumination and dark relaxation, are dependent on ΔpH, and are enhanced by the deepoxidation of violaxanthin to zeaxanthin.  相似文献   

7.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

8.
Sulfite treatment of pea leaf disks in light caused a significant decrease in the relative quantum yield of photosynthetic oxygen evolution and energy storage (ES) as measured by photoacoustic (PA) spectroscopy. The inhibition was concentration dependent and was less in darkness than in light, indicating light-dependent inhibitory site(s) on the photosynthetic electron transport chain. Further, in darksulfite-treated leaves, the energy storage was more affected than the relative quantum yield of oxygen evolution, suggesting that photophosphorylation and/or cyclic electron transport around PS I are sites of sulfite action in darkness. The Rfd values, the ratio of fluorescence decrease (fd) to the steady-state fluorescence (fs), decreased significantly in leaves treated with sulfite in light but were not affected in dark-treated ones, confirming the photoacoustic observations. Similarly, the ratio of variable fluorescence (Fv) to maximum fluorescence (Fm), a measure of PS II photochemical efficiency, was affected by sulfite treatment in light and not changed by treatment in darkness. An attempt was made to explain the mechanism of sulfite action on photosynthetic electron transport in light and in darkness.Abbreviations APT amplitude of photothermal signal - Aox amplitude of oxygen signal - ES energy storage - fd fluorescence decrease - fs steady-state fluorescence - Fm maximum fluorescence - Fv variable fluorescence - PA photoacoustic(s)  相似文献   

9.
以籼型(Oryza sativa L.)杂交组合汕优63为对照,以中粳9516、两系亚种间杂交组合培矮64S/E32、培矮64S/9311、亚种间三系杂交稻冈优881和两系杂交组合X07S/紫恢100为材料,研究其在生育后期(抽穗-成熟)自然条件下剑叶的叶绿素衰减、CO2交换、叶绿素荧光参数和膜脂过氧化表现.结果表明: 水稻在生育后期伴随叶绿素衰减,其叶内的原初光化学效率Fv/Fm、PSⅡ非环式电子传递效率ΦPSⅡ、电子流传递速率ETR都有相应地下降,这种光能转化的障碍使多余的光能传递给PSⅡ的还原侧,产生O(-)/(*)2累积,发生膜脂过氧化和MDA的积累,引起光合色素及光合膜的破坏,发生光氧化早衰.这种现象在品种间有明显差异,耐光氧化的粳稻9516,其叶内的 Fv/Fm、ΦPSⅡ、ETR、qP下降较少,具有较稳定的光能转化能力,不易早衰,具有较高的结实率;而对光氧化敏感的籼稻汕优63其叶内的Fv/Fm、ΦPSⅡ、ETR,光化学猝灭参数qP下降较多,易发生膜脂过氧化,导致叶片早衰,影响水稻灌浆结实和产量;而二系的和三系的杂交稻的耐光氧化特性和早衰表现居于中间.从水稻超高产育种的角度出发,在目前株型良好的基础上,兼顾杂种优势和防止早衰两方面考虑,在母本中利用粳型或带有粳型基因的不育系是育种上一个值得重视的策略.  相似文献   

10.
以辣椒品种“超辣九号”为试材,采用15%的PEG6000模拟干旱,研究了0.1μmol·L^-1外源24-表油菜素内酯(EBR)处理对干旱胁迫下辣椒叶片快速叶绿素荧光诱导动力学曲线(OJIP)的影响。结果表明:干旱胁迫降低了辣椒叶片的光化学效率和光合性能,导致干旱光抑制的发生。干旱胁迫既损伤了辣椒叶片PSⅡ供体侧放氧复合体(OEC),同时也对PSⅡ反应中心和受体侧造成伤害,阻碍了光合电子传递;干旱胁迫还导致单位叶面积有活性反应中心数目(RC/CS)的下降,并降低了单位叶面积吸收的光能(ABS/CS)、捕获的光能(TRo/CS)和进行电子传递的能量(ETo/CS),同时诱导了单位叶面积热耗散(DIo/CS)的增加。这说明辣椒遭受干旱胁迫后启动了相应的防御机制,一方面通过PSⅡ的可逆失活减少光能吸收与传递,另一方面通过促进热耗散减少过剩激发能的积累。EBR处理改善了干旱胁迫下辣椒叶片PSⅡ受体侧的电子传递,缓解了单位叶面积有活性反应中心数目的减少,优化了光合电子传递的进行,并维持相对较高的热耗散能力,从而减轻了干旱光抑制程度,对干旱胁迫下辣椒叶片光合机构和光合性能起到保护作用。  相似文献   

11.
用简易、有效的人工光氧化和遮荫技术对30个水稻(Oryza sativa L.)种质进行筛选,鉴定出既耐光氧化又耐荫、耐光氧化不耐荫、耐荫不耐光氧化、既不耐荫又不耐光氧化等4种品种类型,并用既耐光氧化又耐荫的品种"武育粳3号"和对光氧化和遮荫均敏感的品种"香籼"进行光合特性研究.结果表明:在遮荫条件下,与对光氧化和遮荫敏感的品种"香籼"比较,"武育粳3号"的PSⅡ活性差异不大,RuBisCO活性降低较少,光合能力、光合生产力较高.在光抑制条件下,"武育粳3号"的PSⅡ活性,PSⅡ光化学效率(Fv/Fm),PSⅡ-D1蛋白含量降低较少,光合作用光抑制较轻.在光氧化条件下,内源活性氧清除剂SOD诱导活性高,清除O-能力强,因而叶绿素衰减较慢.上述研究为水稻育种提供了配套的优良生理特性的鉴定技术和生理依据.  相似文献   

12.
The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.  相似文献   

13.
Plants grown in the field experience sharp changes in irradiation due to shading effects caused by clouds, other leaves, etc. The excess of absorbed light energy is dissipated by a number of mechanisms including cyclic electron transport, photorespiration, and Mehler-type reactions. This protection is essential for survival but decreases photosynthetic efficiency. All phototrophs except angiosperms harbor flavodiiron proteins (Flvs) which relieve the excess of excitation energy on the photosynthetic electron transport chain by reducing oxygen directly to water. Introduction of cyanobacterial Flv1/Flv3 in tobacco chloroplasts resulted in transgenic plants that showed similar photosynthetic performance under steady-state illumination, but displayed faster recovery of various photosynthetic parameters, including electron transport and non-photochemical quenching during dark–light transitions. They also kept the electron transport chain in a more oxidized state and enhanced the proton motive force of dark-adapted leaves. The results indicate that, by acting as electron sinks during light transitions, Flvs contribute to increase photosynthesis protection and efficiency under changing environmental conditions as those found by plants in the field.  相似文献   

14.
To establish the role of the two putative type I leader peptidases (LepB1 and LepB2) encoded in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we generated independent knockout mutants for both genes by introducing kanamycin resistance cassettes into the two open reading frames (sll0716 [lepB1] and slr1377 [lepB2], respectively). Although the insertion was successful in both instances, it was not possible to select homozygous mutant cells for lepB2, suggesting that the function of this gene is essential for cell viability. In contrast, LepB1 is apparently essential only for photoautotrophic growth, because homozygous lepB1::Km(r) cells could be propagated under heterotrophic conditions. They were even capable to some extent of photosynthetic oxygen evolution. However, the photosynthetic activity decreased gradually with extended incubation in the light and was particularly affected by high light intensities. Both features were indicative of photooxidative damage, which was probably caused by inefficient replacement of damaged components of the photosynthetic machinery due to the lack of a leader peptidase removing the signal peptides from photosynthetic precursor proteins. Indeed, processing of the PsbO precursor polypeptide to the corresponding mature protein was significantly affected in the mutant, and reduced amounts of other proteins that are synthesized as precursors with signal peptides accumulated in the cells. These results strongly suggest that LepB1 is important for removal of the signal peptides after membrane transport of the components of the photosynthetic machinery, which in turn is a prerequisite for the biogenesis of a functional photosynthetic electron transport chain.  相似文献   

15.
The involvement of the xanthophyll cycle in photoprotection of N-deficient spinach (Spinacia oleracea L. cv Nobel) was investigated. Spinach plants were fertilized with 14 mM nitrate (control, high N) versus 0.5 mM (low N) fertilizer, and grown under both high- and low-light conditions. Plants were characterized from measurements of photosynthetic oxygen exchange and chlorophyll fluorescence, as well as carotenoid and cholorophyll analysis. Compared with the high-N plants, the low-N plants showed a lower capacity for photosynthesis and a lower chlorophyll content, as well as a lower rate of photosystem II photosynthetic electron transport and a corresponding increase in thermal energy dissipation activity measured as nonphotochemical fluorescence quenching. The low-N plants displayed a greater fraction of the total xanthophyll cycle pool as zeaxanthin and antheraxanthin at midday, and an increase in the ratio of xanthophyll cycle pigments to total chlorophyll. These results indicate that under N limitation both the light-collecting system and the photosynthetic rate decrease. However, the increased dissipation of excess energy shows that there is excess light absorbed at midday. We conclude that spinach responds to N limitation by a combination of decreased light collection and increased thermal dissipation involving the xanthophyll cycle.  相似文献   

16.
以水稻品种‘II优084’为材料,测定了强光胁迫下,水稻光合速率、叶绿素荧光快速诱导曲线(OJIP)以及O2ˉ·和H2O2在水稻叶片中积累的影响。结果表明强光胁迫下,水稻的净光合速率及气孔导度下降;光系统II(PSII)反应中心关闭的比例以及电子传递链中光系统II受体侧原初醌受体(QA)的还原程度增加;PSII反应中心电子传递的量子产额、能量以及传递到下游电子链的比率下降;光抑制下PSII的过剩能量向PSI的状态装换减少;自由基的产生增加。而施加作为硫化氢(H2S)供体的外源硫氢化钠(NaHS)后,上述影响PSII活性的指标的负变化被缓解,捕光天线复合体LHC通过在两个光系统之间的移动,来调节两个光系统的能量分配。强光下H2S处理能促进LHC离开PSII,与PSI结合,从而减少PSII分配的激发能,增加PSI分配的激发能,缓解了PSII的过度还原。以上结果表明外源H2S通过促进PSII的光合活性来缓解水稻光抑制伤害。  相似文献   

17.
18.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

19.
用不同类型高产稻(Oryza sativa L.)粳稻9516、具有粳型成分的两系法亚种间杂交稻培矮64/E32、两优培九(培矮64/9311)和籼型杂交稻X07S/紫恢100、冈优881、汕优63为材料,研究了孕穗期叶片在光氧化条件下的叶绿素荧光特性和膜脂过氧化表现.光氧化处理后,与籼型杂交稻比较,粳稻和具有粳型组分的亚种间杂交稻的PSⅡ原初光化学效率(Fv/Fm)、PSⅡ的线性电子传递的量子效率(ΦPSⅡ)和光化学猝灭系数(qP)下降的较少;超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)诱导的活性较高,活性氧 (O(-)/()2、H2O2)和丙二醛(MDA)的产生积累较少,叶绿素和蛋白质含量下降较少,表现出耐光氧化特性,这与在自然条件下生育后期叶绿素含量变化相一致.相关分析表明它们的耐光氧化特性与结实率密切相关,说明耐光氧化品种抗早衰,有利籽粒充实.这些结果启示我们:从超高产育种出发,兼顾杂种优势利用和抗早衰两方面考虑,在母本不育系中引入粳型成分是一个值得重视的育种策略.  相似文献   

20.
Agave salmiana Otto ex Salm-Dyck, a crassulacean acid metabolism plant that is adapted to water-limited environments, has great potential for bioenergy production. However, drought stress decreases the requirement for light energy, and if the amount of incident light exceeds energy consumption, the photosynthetic apparatus can be injured, thereby limiting plant growth. The objective of this study was to evaluate the effects of drought and re-watering on the photosynthetic efficiency of A. salmiana seedlings. The leaf relative water content and leaf water potential decreased to 39.6 % and ?1.1 MPa, respectively, over 115 days of water withholding and recovered after re-watering. Drought caused a direct effect on photosystem II (PSII) photochemistry in light-acclimated leaves, as indicated by a decrease in the photosynthetic electron transport rate. Additionally, down-regulation of photochemical activity occurred mainly through the inactivation of PSII reaction centres and an increased thermal dissipation capacity of the leaves. Prompt fluorescence kinetics also showed a larger pool of terminal electron acceptors in photosystem I (PSI) as well as an increase in some JIP-test parameters compared to controls, reflecting an enhanced efficiency and specific fluxes for electron transport from the plastoquinone pool to the PSI terminal acceptors. All the above parameters showed similar levels after re-watering. These results suggest that the thermal dissipation of excess energy and the increased energy conservation from photons absorbed by PSII to the reduction of PSI end acceptors may be an important acclimation mechanism to protect the photosynthetic apparatus from over-excitation in Agave plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号