首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitrogen (N) is an essential macronutrient and an important factor limiting agricultural productivity. N deficient or excess conditions often occur during the cotton growth season and incorrect N application may affect cotton fiber yield and quality. Here, the influence of N stress on the cotton fiber proteome was investigated by two-dimensional gel electrophoresis and mass spectrometry. The results indicated that N application rate affects nitrogen accumulation in fiber cells and fiber length. The proteins differentially expressed during N stress were mainly related to plant carbohydrate metabolism, cell wall component synthesis and transportation, protein/amino acid metabolism, antioxidation and hormone metabolism. The most abundant proteins were C metabolism-related. Ten days post anthesis is a critical time for fiber cells to perceive environmental stress and most proteins were suppressed in both N deficient and N excess conditions at this sampling stage. However, several N metabolism proteins were increased to enhance N stress tolerance. Excess N may suppress carbohydrate/energy metabolism in early fiber development much like N deficiency. These results have identified some interesting proteins that can be further analyzed to elucidate the molecular mechanisms of N tolerance.  相似文献   

2.
3.
4.
5.
Low temperature stress is one of the major abiotic stresses limiting the formation of cotton (Gossypium hirsutum L.) fiber qualities, especially fiber length. To investigate the molecular adaptation mechanisms of cotton fiber elongation to low temperature stress, two cotton cultivars, Kemian 1 (low temperature-tolerant) and Sumian 15 (low temperature-sensitive), were planted in the field at two sowing dates (25 April and 10 June). The two sowing dates resulted in different growing conditions and the main environmental difference between them was temperature, particularly the mean daily minimum temperature (MDTmin). When the sowing date was delayed, the MDTmin decreased from 26.9 °C (25 April) to 20.6 °C (10 June). Low temperature stress (MDTmin of 20.6 °C) shortened the fiber length significantly in two cultivars, but the decreased extent was larger in Sumian 15 than that in Kemian 1. Proteomic analysis of three developmental stages (10, 15 and 20 days post-anthesis [DPA]) showed that 37 spots changed significantly (p < 0.05) in abundance under low temperature stress and they were identified using mass spectrometry. These proteins were involved in malate metabolism, soluble sugar metabolism, cell wall loosening, cellulose synthesis, cytoskeleton, cellular response, and redox homeostasis. The results suggest that the enhancement of osmoticum maintenance, cell wall loosening, cell wall components biosynthesis, and cytoskeleton homeostasis plays important roles in the tolerance of cotton fibers to low temperature stress. Moreover, low levels of PEPCase, expansin, and ethylene signaling proteins may potentially lead to the low temperature sensitivity of Sumian 15 at the proteomic level.  相似文献   

6.
In pomegranate (Punica granatum), seed hardness is an important trait directly affecting fruit marketability. However, seed formation in pomegranate has not been well studied. We investigated the genetic mechanism underlying pomegranate seed hardness by comparing protein expression profiles between soft- and hard-seeded varieties 60 and 120 days after flowering. We identified 1940 proteins, of which 399 were differentially expressed. Most of the differentially expressed proteins were involved in posttranslational modification and carbohydrate metabolism. Cell wall biosynthesis, which showed positive correlations with seed hardness, was selected as the candidate pathway. The mRNA levels of 14 proteins involved in cell wall biosynthesis were further analyzed by qPCR. Lignin biosynthesis-related differentially expressed proteins showed lower expression at protein and gene levels in a soft-seeded variety at the early stages. Moreover, cellulose biosynthesis-related differentially expressed proteins showed higher expression levels in the soft-seeded variety at 60 days after flowering. Thus, the soft-seeded variety showed lower lignin but higher cellulose biosynthesis at the early fruit developmental stage, suggesting that lignin and cellulose play opposing roles in cell wall formation in pomegranate seeds. Moreover, differentially expressed proteins involved in cell wall degradation showed higher expression levels in the soft-seeded variety at both developmental stages. These results suggested that differences in seed hardness between soft- and hard-seeded pomegranates might result from cell wall biosynthesis and also be affected by cell wall degradation. The present proteome-wide profiling of pomegranate genotypes with contrasting seed hardness adds to the current knowledge base of the molecular basis of seed hardness development.  相似文献   

7.
In our previous study, we used a comparative proteomic approach based on 2DE to profile dynamic proteomes of cotton fibers and found 235 protein spots differentially expressed during the elongation process ranging from 5 to 25 days post‐anthesis. Of them, only 106 differentially expressed proteins (DEPs) were identified by MS due to database limitations at the time. In the present work, we successfully identified the remaining 129 DEPs from the same experimental system using high‐resolution MS with an updated database. Bioinformatic analysis revealed that proteins involved in carbohydrate and protein metabolism, transport, and redox homeostasis are the most abundant, and glycolysis was found to be the most significantly regulated process during fiber elongation. Our high‐confidence reference dataset, composed of 235 DEPs, provides a valuable resource for future studies on the molecular mechanism of cotton fiber elongation.  相似文献   

8.
An investigation to better understand the molecular mechanism of cotton (Gossypium hirsutum L.) fiber elongation in response to drought stress and recovery was conducted using a comparative proteomics analysis. Cotton plants (cv. NuCOTN 33B) were subjected to water deprivation for 10 days followed by a recovery period (with watering) of 5 days. The temporal changes in total proteins in cotton fibers were examined using 2DE. The results revealed that 163 proteins are significantly drought responsive. MS analysis led to the identification of 132 differentially expressed proteins that include some known as well as some novel drought‐responsive proteins. These drought responsive fiber proteins in NuCOTN 33B are associated with a variety of cellular functions, i.e. signal transduction, protein processing, redox homeostasis, cell wall modification, metabolisms of carbon, energy, lipid, lignin, and flavonoid. The results suggest that the enhancement of the perception of drought stress, a new balance of the metabolism of the biosynthesis of cell wall components and cytoskeleton homeostasis plays an important role in the response of cotton fibers to drought stress. Overall, the current study provides an overview of the molecular mechanism of drought response in cotton fiber cells.  相似文献   

9.
Aging is a time‐dependent complex biological phenomenon observed in various organs and organelles of all living organisms. To understand the molecular mechanism of age‐associated functional loss in aging kidneys, we have analyzed the expression of proteins in the kidneys of young (19–22 wk) and old (24 months) C57/BL6 male mice using 2‐DE followed by LC‐MS/MS. We found that expression levels of 49 proteins were upregulated (p ≤ 0.05), while that of only ten proteins were downregulated (p ≤ 0.05) due to aging. The proteins identified belong to three broad functional categories: (i) metabolism (e.g., aldehyde dehydrogenase family, ATP synthase β‐subunit, malate dehydrogenase, NADH dehydrogenase (ubiquinone), hydroxy acid oxidase 2), (ii) transport (e.g., transferrin), and (iii) chaperone/stress response (e.g., Ig‐binding protein, low density lipoprotein receptor‐related protein associated protein 1, selenium‐binding proteins (SBPs)). Some proteins with unknown functions were also identified as being differentially expressed. ATP synthase β subunit, transferrin, fumarate hydratase, SBPs, and albumin are present in multiple forms, possibly arising due to proteolysis or PTMs. The above functional categories suggest specific mechanisms and pathways for age‐related kidney degeneration.  相似文献   

10.
Pollen development is disturbed in the microspore development stage of the double-recessive nuclear male-sterile line ms5ms6 (Gossypium hirsutum L.). This study aimed to identify differentially expressed anther proteins and their potential roles in pollen development and male sterility. We compared the proteomes of sterile and fertile anthers of the double recessive nuclear male-sterile line ms5ms6. Approximately 1,390 protein spots were detected by two-dimensional differential gel electrophoresis. Proteins with altered accumulation levels in sterile anthers compared with fertile anthers were identified by mass spectrometry and the NCBInr and Viridiplantae EST databases. Down-regulated proteins in the sterile anthers included cytosolic ascorbate peroxidase 1 and glutaminyl-tRNA synthetase (glutamine-tRNA ligase). Several carbohydrate metabolism- and photosynthesis-related enzymes were also present at lower levels in the mutant anthers. By contrast, ATP-dependent RNA helicase eIF4A-13, NADH dehydrogenase subunit 1, enolase, gibberellin 20-oxidase, gibberellin 3-hydroxylase 1, alcohol dehydrogenase 2d, 3-ketoacyl-CoA synthase, and trehalose 6-phosphate synthase were expressed at higher levels in sterile anthers than in fertile anthers. The regulation of upland cotton pollen development involves a complex network of differentially expressed genes. This study provides the foundation for future investigations of gene function in upland cotton pollen development and male sterility.  相似文献   

11.
Powdery mildew, caused by Sphaerotheca fuliginea (S. fuliginea), is the most devastating disease that hampers cucumber plants cultivation and productivity. Cell wall proteins (CWPs) play a crucial role in response to biotic stress as a frontline defense of plants. In this work, we present a comparative cell wall proteomic approach to explore differentially expressed proteins in both highly resistant and highly susceptible cucumber leaves after 24 h of exposure to S. fuliginea. After extraction conducted by a destructive procedure with salts, glucose-6-phosphate dehydrogenase (G6PDH) activity and SDS-PAGE assessments were performed to determine the cytosolic contamination. Label-free quantitative proteomics approach was used to gain a comprehensive understanding of differentially regulated CWPs between the two lines after S. fuliginea inoculation. Among more than 200 proteins identified, 71 were significantly altered between the two lines. Most of these identified proteins were predicted to be CWPs except some classical cytosolic proteins. These differentially expressed CWPs belonged to different functional categories including defense, metabolism, redox regulation and cell wall arrangement. The expression levels of seven proteins selected were determined using RT-PCR. We found that resistant cucumber line is believed to start a series of disease-resistant mechanisms against pathogen. This study provides useful information on cell wall proteomic changes between a resistant and a susceptible genotype under infected conditions.  相似文献   

12.
13.
14.
Cardiac hypertrophy induced by exercise is associated with less cardiac fibrosis and better systolic and diastolic function, suggesting that the adaptive mechanisms may exist in exercise-induced hypertrophy. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Sixteen male Sprague–Dawley rats were divided into trained (T) and control(C). T rats underwent eight weeks of swimming training seven days/week, using a high intensity protocol. Hearts were used to generate 2-D electrophoretic proteome maps. Training significantly altered 23 protein spot intensities (P < 0.05), including proteins associated with the mitochondria oxidative metabolism, such as prohibitin, malate dehydrogenase, short-chain acyl-CoA dehydrogenase, triosephosphate isomerase, electron transfer flavoprotein subunit beta, ndufa10 protein, ATP synthase subunit alpha and isocitrate dehydrogenase [NAD] subunit. Additionally, Prohibitin was increased in the exercise-induced hearts. Cytoskeletal, signal pathway, stress and oxidative proteins also increased within T groups. These results strongly support the notion that the observed changes in the expression of energy metabolism proteins resulted in a potential increase in the capacity to synthesise ATP, probably via mitochondrial oxidative metabolism. The observed changes in the expression of these metabolic and structural proteins induced by training may beneficially influence heart metabolism, stress response and signalling paths, and therefore improve the overall cardiac function.  相似文献   

15.
16.
17.
18.
A comparative proteomic analysis was performed to explore the mechanism of cell elongation in developing cotton fibers. The temporal changes of global proteomes at five representative development stages (5-25 days post-anthesis [dpa]) were examined using 2-D electrophoresis. Among approximately 1800 stained protein spots reproducibly detected on each gel, 235 spots were differentially expressed with significant dynamics in elongating fibers. Of these, 120 spots showed a more than 2-fold change in at least one stage point, and 21 spots appeared to be specific to developmental stages. Furthermore, 106 differentially expressed proteins were identified from mass spectrometry to match 66 unique protein species. These proteins involve different cellular and metabolic processes with obvious functional tendencies toward energy/carbohydrate metabolism, protein turnover, cytoskeleton dynamics, cellular responses and redox homeostasis, indicating a good correlation between development-dependent proteins and fiber biochemical processes, as well as morphogenesis. Newly identified proteins such as phospholipase D alpha, vf14-3-3 protein, small ras-related protein, and GDP dissociation inhibitor will advance our knowledge of the complicated regulatory network. Identification of these proteins, combined with their changes in abundance, provides a global view of the development-dependent protein changes in cotton fibers, and offers a framework for further functional research of target proteins associated with fiber development.  相似文献   

19.
20.
Alternaria blotch, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of serious pathogen of apples. In order to better understand the molecular mechanisms that underlie the defense responses of apple resistance to Alternaria blotch disease, a comparative proteomic approach was applied to analyze of susceptible and resistant apple cultivars response to A. alternata AP infection using iTRAQ (isobaric tags for relative and absolute quantitation) technique. A total of 4225 proteins were identified, and 1226 proteins were quantified. Of the quantified proteins, 280 and 34 expressed differentially (fold change >1.5) at 72 h post-infection (HPI) in the susceptible (“Starking Delicious”) and the resistant (“Jonathan”) apple cultivars, respectively, compared with mock-inoculated controls. Most of the differentially expressed proteins (DEPs) were associated with host plant resistance to pathogens, including signal transduction, stress and defense, and photosynthesis metabolism. Among these proteins, beta-1,3-glucanase(PR2), thaumatin-like protein (PR5), and lipoxygenase were found in both susceptible and resistant hosts. However, endochitinase and (+)-neomenthol dehydrogenase were only detected in the resistant cultivar and increased in abundance in response to the pathogen attack. To study the role of pathogenesis-related (PR) proteins in the early infection process, their expressions at 6, 18, 36, and 72 HPI were analyzed by western blot. It showed that PR5 were accumulated to a high level at 6 HPI in “Jonathan,” while cannot be detected in “Starking Delicious” until 18 HPI. The above results suggested that endochitinase and (+)-neomenthol dehydrogenase, as well as PR5 which exerts function at early stage, play important roles in apple plant against A. alternata AP infestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号