首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na+/H+ antiporters play an important role in salt tolerance in plants. However, the functions of OsNHXs in rice except OsNHX1 have not been well studied. Using the gain- and loss-of-function strategies, we studied the potential role of OsNHX2 in salt tolerance in rice. Overexpression of OsNHX2 (OsNHX2-OE) in rice showed the significant tolerance to salt stress than wild-type plants and OsNHX2 knockdown transgenic plants (OsNHX2-KD). Under salt treatments of 300-mM NaCl for 5 days, the plant fresh weights, relative water percentages, shoot heights, Na+ contents, K+ contents, and K+/Na+ ratios in leaves of OsNHX2-OE transgenic plants were higher than those in wild-type plants, while no differences were detected in roots. K+/Na+ ratios in rice leaf mesophyll cells and bundle sheath cells were higher in OsNHX2-OE transgenic plants than in wild-type plants and OsNHX2-KD transgenic plants. Our data indicate that OsNHX2 plays an important role in salt stress based on leaf mesophyll cells and bundle sheath cells and can be served in genetically engineering crop plants with enhanced salt tolerance.  相似文献   

2.
3.
The aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150–200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30% (p < 0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p < 0.05), and association of IRS1 with p85 subunit of PI3K by 42% (p < 0.05), while the levels of cardiac RhoA and ROCK2 were significantly increased by 84% (p < 0.01) and 62% (p < 0.05), respectively. Our results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular mechanisms involving RhoA/ROCK and IRS-1/PI3K signalling in female rats.  相似文献   

4.
While the role of the vacuolar NHX Na+/H+ exchangers in plant salt tolerance has been demonstrated on numerous occasions, their control over cytosolic ionic relations has never been functionally analysed in the context of subcellular Na+ and K+ homeostasis. In this work, PutNHX1 and SeNHX1 were cloned from halophytes Puccinellia tenuiflora and Salicornia europaea and transiently expressed in Arabidopsis wild type Col-0 and the nhx1 mutant. Phylogentic analysis, topological prediction, analysis of evolutionary conservation, the topology structure and analysis of hydrophobic or polar regions of PutNHX1 and SeNHX1 indicated that they are unique tonoplast Na+/H+ antiporters with characteristics for salt tolerance. As a part of the functional assessment, cytosolic and vacuolar Na+ and K+ in different root tissues and ion fluxes from root mature zone of Col-0, nhx1 and their transgenic lines were measured. Transgenic lines sequestered large quantity of Na+ into root cell vacuoles and also promoted high cytosolic and vacuolar K+ accumulation. Expression of PutNHX1 and SeNHX1 led to significant transient root Na+ uptake in the four transgenic lines upon recovery from salt treatment. In contrast, the nhx1 mutant maintained a prolonged Na+ efflux and the nhx1:PutNHX1 and nhx1:SeNHX1 lines started to actively pump Na+ out of the cell. Overall, our findings suggest that PutNHX1 and SeNHX1 improve Na+ sequestration in the vacuole and K+ retention in the cytosol and vacuole of root cells of Arabidopsis, and that they interact with other regulatory mechanisms to provide a highly orchestrated regulation of ionic relations among intracellular cell compartments.  相似文献   

5.
6.
One important mechanism plants use to cope with salinity is keeping the cytosolic Na+ concentration low by sequestering Na+ in vacuoles, a process facilitated by Na+/H+ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled us to identify six Medicago truncatula NHX genes (MtNHX1, MtNHX2, MtNHX3, MtNHX4, MtNHX6, and MtNHX7). Twelve transmembrane domains and an amiloride binding site were conserved in five out of six MtNHX proteins. Phylogenetic analysis involving A. thaliana, Glycine max, Phaseolus vulgaris, and M. truncatula revealed that each individual MtNHX class (class I: MtNHX1 through 4; class II: MtNHX6; class III: MtNHX7) falls under a separate clade. In a salinity-stress experiment, M. truncatula exhibited ~?20% reduction in biomass. In the salinity treatment, sodium contents increased by 178 and 75% in leaves and roots, respectively, and Cl? contents increased by 152 and 162%, respectively. Na+ exclusion may be responsible for the relatively smaller increase in Na+ concentration in roots under salt stress as compared to Cl?. Decline in tissue K+ concentration under salinity was not surprising as some antiporters play an important role in transporting both Na+ and K + . MtNHX1, MtNHX6, and MtNHX7 display high expression in roots and leaves. MtNHX3, MtNHX6, and MtNHX7 were induced in roots under salinity stress. Expression analysis results indicate that sequestering Na+ into vacuoles may not be the principal component trait of the salt tolerance mechanism in M. truncatula and other component traits may be pivotal.  相似文献   

7.
High salinity is the one of important factors limiting plant growth and crop production. Many NHX-type antiporters have been reported to catalyze K+/H+ exchange to mediate salt stress. This study shows that an NHX gene from Arachis hypogaea L. has an important role in K+ uptake and transport, which affects K+ accumulation and plant salt tolerance. When overexpressing AhNHX1, the growth of tobacco seedlings is improved with longer roots and a higher fresh weight than the wild type (WT) under NaCl treatment. Meanwhile, when exposed to NaCl stress, the transgenic seedlings had higher K+/H+ antiporter activity and their roots got more K+ uptake. NaCl stress could induce higher K+ accumulation in the roots, stems, and leaves of transgenic tobacco seedlings but not Na+ accumulation, thus, leading to a higher K+/Na+ ratio in the transgenic seedlings. Additionally, the AKT1, HAK1, SKOR, and KEA genes, which are involved in K+ uptake or transport, were induced by NaCl stress and kept higher expression levels in transgenic seedlings than in WT seedlings. The H+-ATPase and H+-PPase activities were also higher in transgenic seedlings than in the WT seedlings under NaCl stress. Simultaneously, overexpression of AhNHX1 increased the relative distribution of K+ in the aerial parts of the seedlings under NaCl stress. These results showed that AhNHX1 catalyzed the K+/H+ antiporter and enhanced tobacco tolerance to salt stress by increasing K+ uptake and transport.  相似文献   

8.
9.
The contents of Na+, K+, water, and dry matter were measured in leaves and roots of euhalophytes Salicornia europaea L. and Climacoptera lanata (Pall.) Botsch featuring succulent and xeromorphic cell structures, respectively, as well as in saltbush Atriplex micrantha C.A. Mey, a halophyte having bladder-like salt glands on their leaves. All three species were able to accumulate Na+ in their tissues. The Na+ content in organs increased with elevation of NaCl concentration in the substrate, the concentrations of Na+ being higher in leaves than in roots. When these halophytes were grown on a NaCl-free substrate, a trend toward K+ accumulation was observed and was better pronounced in leaves than in roots. Particularly high K+ concentrations were accumulated in Salicornia leaves. There were no principal differences in the partitioning of Na+ and K+ between organs of three halophyte species representing different ecological groups. At all substrate concentrations of NaCl, the total content of Na+ and K+ in leaves was higher than in roots. This distribution pattern persisted in Atriplex possessing salt glands, as well as in euhalophytes Salicornia and Climacoptera. The physiological significance of such universal pattern of ion accumulation and distribution among organs in halophytes is related to the necessity of water absorption by roots, its transport to shoots, and maintenance of sufficient cell water content in all organs under high soil salinity.  相似文献   

10.
The tonoplast and plasma membrane localized sodium (potassium)/proton antiporters have been shown to play an important role in plant resistance to salt stress. In this study, AtNHX1 and AtNHX3, two tonoplast Na+(K+)/H+ antiporter encoding genes from Arabidopsis thaliana, were expressed in poplar to investigate their biological functions in the resistance to abiotic stresses in woody plants. Transgenic poplar plants expressing either gene exhibited increased resistance to both salt and water-deficit stresses. Compared to the wild type (WT) plants, transgenic plants accumulated more sodium and potassium ions in the presence of 100 mM NaCl and showed reduced electrolyte leakage in the leaves under water stress. Furthermore, the proton-translocating and cation-dependent H+ (Na+/H+ or K+/H+) exchange activities in the tonoplast vesicles isolated from the leaves of transgenic plants were higher than in those isolated from WT plants. Therefore, constitutive expression of either AtNHX1 or AtNHX3 genetically modified the salt and water stress tolerance of transgenic poplar plants, providing a potential tool for engineering tree species with enhanced resistance to multiple abitotic stresses.  相似文献   

11.
12.
The affinity for K+ of silkworm nerve Na+/K+-ATPase is markedly lower than that of mammalian Na+/K+-ATPase (Homareda 2010). In order to obtain clues on the molecular basis of the difference in K+ affinities, we cloned cDNAs of silkworm (Bombyx mori) nerve Na+/K+-ATPase α and β subunits, and analyzed the deduced amino acid sequences. The molecular masses of the α and β subunits were presumed to be 111.5 kDa with ten transmembrane segments and 37.7 kDa with a single transmembrane segment, respectively. The α subunit showed 75% identity and 93% homology with the pig Na+/K+-ATPase α1 subunit. On the other hand, the amino acid identity of the β subunit with mammalian counterparts was as low as 30%. Cloned α and β cDNAs were co-expressed in cultured silkworm ovary-derived cells, BM-N cells, which lack endogenous Na+/K+-ATPase. Na+/K+-ATPase expressed in the cultured cells showed a low affinity for K+ and a high affinity for Na+, characteristic of the silkworm nerve Na+/K+-ATPase. These results suggest that the β subunit is responsible for the affinity for K+ of Na+/K+-ATPase.  相似文献   

13.
A vacuole Na+/H+ antiporter gene TaNHX2 was obtained by screening the wheat cDNA library and by the 5′-RACE method. The expression of TaNHX2 was induced in roots and leaves by treatment with NaCl, polyethylene glycol (PEG), cold and abscisic acid (ABA). When expressed in a yeast mutant (Δnhx1), TaNHX2 suppressed the salt sensitivity of the mutant, which was deficient in vacuolar Na+/H+ antiporter, and caused partial recovery of growth of Δnhx1 in NaCl and LiC1 media. The survival rate of yeast cells was improved by overexpressing the TaNHX2 gene under NaCl, KCl, sorbitol and freezing stresses when compared with the control. The results imply that TaNHX2 might play an important role in salt and osmotic stress tolerance in plant cells.  相似文献   

14.
Neurotensin behaves as a neuromodulator or as a neurotransmitter interacting with NTS1 and NTS2 receptors. Neurotensin in vitro inhibits synaptosomal membrane Na+, K+-ATPase activity. This effect is prevented by administration of SR 48692 (antagonist for NTS1 receptor). The administration of levocabastine (antagonist for NTS2 receptor) does not prevent Na+, K+-ATPase inhibition by neurotensin when the enzyme is assayed with ATP as substrate. Herein levocabastine effect on Na+, K+-ATPase K+ site was explored. For this purpose, levocabastine was administered to rats and K+-p-nitrophenylphosphatase (K+-p-NPPase) activity in synaptosomal membranes and [3H]-ouabain binding to cerebral cortex membranes were assayed in the absence (basal) and in the presence of neurotensin. Male Wistar rats were administered with levocabastine (50 μg/kg, i.p., 30 min) or the vehicle (saline solution). Synaptosomal membranes were obtained from cerebral cortex by differential and gradient centrifugation. The activity of K+-p-NPPase was determined in media laking or containing ATP plus NaCl. In such phosphorylating condition enzyme behaviour resembles that observed when ATP hydrolyses is recorded. In the absence of ATP plus NaCl, K+-p-NPPase activity was similar for levocabastine or vehicle injected (roughly 11 μmole hydrolyzed substrate per mg protein per hour). Such value remained unaltered by the presence of 3.5 × 10?6 M neurotensin. In the phosphorylating medium, neurotensin decreased (32 %) the enzyme activity in membranes obtained from rats injected with the vehicle but failed to alter those obtained from rats injected with levocabastine. Levocabastine administration enhanced (50 %) basal [3H]-ouabain binding to cerebral cortex membranes but failed to modify neurotensin inhibitory effect on this ligand binding. It is concluded that NTS2 receptor blockade modifies the properties of neuronal Na+, K+-ATPase and that neurotensin effect on Na+, K+-ATPase involves NTS1 receptor and -at least partially- NTS2 receptor.  相似文献   

15.
16.
17.
The vacuolar Na+/H+ antiporter is known to alleviate saline stress by sequestering Na+ in both wild-type Arabidopsis and rice and when over-expressed in many transgenic plants. Here we report on the effect of the NHX1 transgene on the salt tolerance properties it confers to a rice landrace and a commercial cultivar suitable for the dry winter season, but which suffers loss due to seasonal stresses, particularly in the coastal areas. The Nipponbare Na+/H+ antiporter 1.9 kb cDNA was cloned into pCAMBIA1305.1 under the control of the CaMV35S promoter and transformed into tissue-culture-responsive rice landrace Binnatoa (BA). The best-expressing transgenic line at T2 was found to be significantly tolerant at the seedling stage and was advanced to T3. The transgene was then transferred to the tissue-culture recalcitrant farmer-popular commercial rice genotype, BRRIdhan 28 (BR28) by crossing. The data generated both from semi-quantitative RT-PCR and western blot hybridization revealed that the transgene showed similar expression in the crossbred BR28 plants and BA transgenic line. Comparative stress tolerance tests, however, revealed that the BR28 crossbred lines were significantly less tolerant than its transgenic parent BA at both seedling and reproductive stages. A single successful transgenic event may therefore not show the same performance in the recipient genetic background, if introgressed by crossing.  相似文献   

18.
19.
A set of 84 diverse rice genotypes were assessed for seedling stage salt tolerance and their genetic diversity using 41 polymorphic SSR markers comprising of 19 Saltol QTL linked and 22 random markers. Phenotypic screening under hydroponics identified three indica landraces (Badami, Shah Pasand and Pechi Badam), two Oryza rufipogon accessions (NKSWR2 and NKSWR17) and one each of Basmati rice (Seond Basmati) and japonica cultivars (Tompha Khau) as salt tolerant, having similar tolerance as of Pokkali and FL478. Among the salt tolerant genotypes, biomass showed positive correlation with shoot fresh weight and negative association with root and shoot Na+ content. The results indicated repression of Na+ loading within the tolerant plants. Linkage disequilibrium (LD) of the Saltol linked markers was weak, suggestive of high fragmentation of Pokkali haplotype, a result of evolutionary active recombination events. Poor haplotype structure of the Saltol region, may reduce its usefulness in marker assisted breeding programmes, if the target foreground markers chosen are wide apart. LD mapping identified eight robust marker-trait associations (QTLs), of which RM10927 was found linked to root and shoot Na+ content and RM10871 with shoot Na+/K+ ratio. RM271 on chromosome 10, an extra Saltol marker, was found associated to root Na+/K+ ratio. This marker showed a distinct allele among O. rufipogon accessions. There were also other novel loci detected on chromosomes 2, 5 and 10 influencing salt tolerance in the tested germplasm. Although Saltol remained as the key locus, the role of other genomic regions cannot be neglected in tailoring seedling stage salt tolerance in rice.  相似文献   

20.
The gene HvNHX3 encoding a new isoform of vacuolar Na+/H+-antiporter was identified in barley. This gene is expressed in roots and leaves of barley seedlings, and it encodes a protein consisting of 541 amino acid residues with pre-dicted molecular weight 59.7 kDa. It was found that by its amino acid sequence HvNHX3 is closest to the Na+/H+-antiporter HbNHX1 of wild type from Hordeum brevisibulatum that grows on salt-marsh (solonchak) soils (95% homology). The expression of HvNHX3 during salt stress is increased several-fold in roots and leaves of barley seedlings. At the same time, the amount of HvNHX3 protein in roots does not change, but in leaves it increases significantly. It was shown using HvNHX3 immunolocalization in roots that this protein is present in all tissues, but in control plants it was clustered and in experimental plants after salt stress it was visualized as small granules. It has been proposed that HvNHX3 is converted into active form during declusterization. The conversion of HvNHX3 into its active form along with its quantitative increase in leaves during salt stress activates Na+/H+-exchange across the vacuolar membrane and Na+ release from cytoplasm, and, as a consequence, an increase of salt stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号