共查询到20条相似文献,搜索用时 9 毫秒
1.
A comparison of photosynthetic characteristics of 20 cultivars of grapevine ( Vitis vinifera L. ) from Mallorca (Balearic Islands, Spain) and two widespread cultivars, Cabernet Sauvignon and Chardonnay, was made under irrigation as well as in response to drought. Although these cultivars share a common origin, a high variability was found for several photosynthetic characters under irrigation. Interestingly, these variations were significant for gas-exchange parameters (net CO2 assimilation, stomatal conductance and intrinsic water use efficiency) but not for chlorophyll fluorescence parameters (maximum photochemical efficiency, electron transport rate and non-photochemical quenching). Since water stress is the most limiting factor for plant production under the Mediterranean climate, it is presumable that these findings reflect specific selection pressures over physiological characteristics related to a balance between net carbon gain and water use. Some cultivars presented high carbon assimilation at the expense of a high water loss, whereas others were water savers, accompanied by low CO2 assimilation even under irrigation. Escursach was found to be an interesting cultivar, presenting low water consumption at the same time as reasonably high carbon assimilation. These cultivars also showed different responses to drought, which allowed their classification in two main groups: alarmist cultivars, which showed strong reductions of stomatal conductance in response to relatively low decreases of leaf water potential, and luxurious cultivars, showing low reductions of stomatal conductance under water stress. 相似文献
2.
Luiz Henrique Saes Zobiole Robert John Kremer Rubem Silvério de Oliveira Jr Jamil Constantin 《Plant and Soil》2010,336(1-2):251-265
The crop area planted to conventional soybeans has decreased annually while that planted to glyphosate-resistant (RR) soybean has drastically increased mainly due to the wide adoption of glyphosate in current weed management systems. With the extensive use of glyphosate, many farmers have noted visual plant injury in RR soybean varieties after glyphosate application. A new generation designated as “second generation—RR2” has been recently developed and these RR2 cultivars already are commercially available for farmers and promoted as higher yielding relative to the previous RR cultivars. However, little information is currently available about the performance of RR2 soybean beyond commercial and farmer testimonial data. Thus, an evaluation of different glyphosate rates applied in different growth stages of the first and second generation of RR soybeans, revealed a significant decrease in photosynthesis. In general, increased glyphosate rate and late applications (V6) pronounced decrease photosynthetic parameters and consequently decreased in leaf area and shoot biomass production. In contrast, low rate and early applications were less damage for the RR soybean plants, suggesting that with early applications (V2), plants probably have more time to recover from glyphosate or its metabolites effects regarding late applications. 相似文献
3.
Karolina Sakowska Giorgio Alberti Lorenzo Genesio Alessandro Peressotti Gemini Delle Vedove Damiano Gianelle Roberto Colombo Mirco Rodeghiero Cinzia Panigada Radosław Juszczak Marco Celesti Micol Rossini Matthew Haworth Benjamin W. Campbell Jean‐Philippe Mevy Loris Vescovo M. Pilar Cendrero‐Mateo Uwe Rascher Franco Miglietta 《Plant, cell & environment》2018,41(6):1427-1437
The photosynthetic, optical, and morphological characteristics of a chlorophyll‐deficient (Chl‐deficient) “yellow” soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl‐deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non‐photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy‐scale gross primary production and ecosystem respiration were comparable between the Chl‐deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non‐photochemical quenching relaxation and gas exchange in Chl‐deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl‐deficient mutant under field conditions. 相似文献
4.
Increasing specific leaf weight (SLW) may improve leaf apparent photosynthesis (AP) in soybean [Glycine max (L.) Merr.] but screening for SLW and AP is laborious. The Objectives of this study were (i) to determine the time course of SLW and chlorophyll concentration in experimental lines selected for differences in SLW and (ii) to evaluate the potential use of the Minolta 502 SPAD meter as a rapid estimator of SLW, AP and chlorophyll concentration in leaves of soybean. In 1991 and 1992, sixteen experimental lines representing extremes in SLW were grown at Urbana, IL, and West Lafayette, IN, with three replications at each location. SPAD values, SLW and AP were measured at the R2 (full flower), R4 (full pod) and R5 (beginning seed) growth stages. In 1992 SLW, SPAD values and chlorophyll concentration were measured weekly. Seasonal patterns of SPAD values, SLW, and chlorophyll concentration were very similar through R5. After R5, SLW continued to increase but SPAD values and chlorophyll concentration declined. SPAD values and SLW were highly correlated at the R2, R4 and R5 stages at both locations and in both years. Environmental conditions during this research were not suitable for maximum AP expression, which is likely why AP and SPAD values were correlated only at the R4 growth stage at Urbana in 1992. SPAD measurements were consistent across diverse environments and effectively separated the high SLW lines from the low SLW lines. Measuring with the Minolta 502 SPAD meter is rapid, simple and non-destructive and could be an alternative method for direct selection for SLW.Abbreviations AP-
leaf apparent photosynthesis
- CV-
coefficient of variation
- Rug-
leaf rugosity
- SLW-
specific leaf weight
- SPAD-L-
SPAD value of the most recently expanded terminal leaflet
- SPAD-P-
SPAD value of leaflet used to measure AP
- SPAD-S-
SPAD value of leaflets used to measure SLW
- SPAD-U-
SPAD value of the terminal leaflet one node above the most recently expanded terminal leaflet
The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged 相似文献
5.
6.
Luiz Henrique Saes Zobiole Edicléia Aparecida Bonini Rubem Silvério de OliveiraJr. Robert John Kremer Osvaldo Ferrarese-Filho 《Acta Physiologiae Plantarum》2010,32(5):831-837
Farmers report that some glyphosate-resistant soybean varieties are visually injured by glyphosate. Glyphosate is the main
herbicide that directly affects the synthesis of secondary compounds. In this work, we evaluated the effect of increasing
rates of glyphosate on lignin and amino acid content, photosynthetic parameters and dry biomass in the early maturity group
cultivar BRS 242 GR soybean. Plants were grown in half-strength complete nutrient solution and subjected to various rates
of glyphosate either as a single or in sequential applications. All parameters evaluated were affected by increasing glyphosate
rates. The effects were more pronounced as glyphosate rates increased, and were more intense with a single total application
than sequential applications at lower rates. 相似文献
7.
针对大豆落花落荚问题,选取花器官脱落性质存在差异的4份大豆(Glycine max)花序样品进行了RNA提取、转录组测序和分析。共获得原始数据20 GB,其中有效数据14.87 GB。结果表明,多荚与少荚品种花序转录水平差异主要集中在物质代谢、胁迫应答(GLYMA02g03301、GLYMA02G03230等)、刺激应答、病害抗性等方面,与脱落直接相关的基因表达上并无显著差异,表明参与上述生理过程的相关基因表达的差异与不同品种大豆落花落荚性质上的差异具有一定相关性。该结果系统地了解了不同品种大豆在花期花序部分的转录组特征与差异,分析了相关表达差异对于大豆落花落荚的影响,同时丰富了大豆转录组数据信息。 相似文献
8.
The chlorophyll fluorescence imaging technique is a valuable tool for studying the impact of heavy metal stress in plants. The toxic effects of cadmium (50 mg/kg soil) and arsenic (5 mg/kg soil) on growth and the photosynthetic apparatus of two soybean cultivars (Glycine max (L.) Merr. cvs. Bólyi 44 and Cordoba) were assessed. After 10 days of growth in the contaminated soil, fresh and dry weights of shoots and maximum quantum yield of photosystem II (Fv/Fm) for the three types of leaves (UL—unifoliate leaf, TL1—first fully expanded trifoliate leaf, TL2—newly expanding trifoliate leaf) were determined. No statistically significant change in the growth parameters was recorded. In the youngest leaves (TL2) of cultivar Bólyi 44, arsenic caused decrease in Fv/Fm by 8.6%. In the cultivar Cordoba we recorded the arsenic impact, conversely, having the highest inhibition rate of fluorescence in the oldest leaves (UL decrease of 5.62%). A similar difference in trend of changes in Fv/Fm as the impact of cadmium was also recorded. With the Bólyi 44 variety, the TL2 leaves showed most sensitive response (a decrease of 10.75%); while in the case of Cordoba variety TL2 leaves showed the highest tolerance (a decrease of 1.2%). The results suggest possible genotypic differences in defense strategy against cadmium and arsenic in the different types of leaves. 相似文献
9.
X. Y. Hao X. Han S. K. Lam T. Wheeler H. Ju H. R. Wang Y. C. Li E. D. Lin 《Photosynthetica》2012,50(3):362-370
The objective of this study was to investigate the effect of elevated (550 ± 17 ??mol mol?1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar. 相似文献
10.
干旱和复水对大豆(Glycine max)叶片光合及叶绿素荧光的影响 总被引:1,自引:0,他引:1
选用河南省大面积种植的大豆品种豫豆29作为实验材料,通过研究逐步干旱和旱后复水条件下大豆叶片光合、叶绿素荧光等指标随土壤水分的动态变化规律,以期为大豆的水分高效利用提供理论依据。研究发现,在土壤相对含水量高于46.5%时,虽然随着土壤相对含水量的下降,豫豆29仍可以保持它的叶片水分状态;豫豆29的叶片净光合速率在土壤水分中等条件下最大,在土壤相对含水量为64.3%时,它比对照组高出11.2%(P<0.01);在实验的第3d,处理组的土壤相对含水量降为46.5%,叶片水势与对照组相比降低了7.2%(P>0.05),净光合速率为对照组的89.6%(P<0.05),但气孔导度却迅速下降为对照组的44.7%(P<0.01),这说明与叶片的光合和水分状况相比,豫豆29的气孔对土壤水分的匮缺更加敏感。复水后,豫豆29叶片的水势、净光合速率、气孔导度和叶绿素荧光等值都可以得到迅速的恢复,并在实验的最后接近对照组的水平,这表明豫豆29的叶片光合在水分胁迫解除后有迅速恢复的能力。 相似文献
11.
Kanchan Jumrani Virender Singh Bhatia Govind Prakash Pandey 《Photosynthesis research》2017,131(3):333-350
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28?°C with an average temperature of 26, 29, 32 and 35?°C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2?°C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28?°C, respectively. 相似文献
12.
Andersom Milech Einhardt Sandro Ferreira Lillian Mathias Oliveira Dimas Mendes Ribeiro Fabrício Ávila Rodrigues 《Physiologia plantarum》2020,170(4):592-606
Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P. pachyrhizi, were investigated. Inoculated plants supplied with Ni had the highest foliar Ni concentration in all the treatments. Gl had a negative effect on the foliar Ni concentration in Ni-sprayed plants. The ASR severity was reduced in plants sprayed with Ni and Gl. Carotenoid and chlorophyll concentrations were higher in inoculated Ni, Gl, and Ni + Gl plants than in control plants. Based on the chlorophyll a fluorescence parameters, the photosynthetic apparatus of the control inoculated plants was damaged, and the least amount of energy was directed to the photochemistry process in these plants. The reduced capacity of the photosynthetic mechanism to capture light and use the energy absorbed by photosystem II in inoculated plants was reflected in their reduced capacity to process CO2, as indicated by the high internal CO2 concentrations and low rates of net carbon assimilation. The low sugar concentrations in inoculated plants from the control treatment were linked to their reduced photosynthetic capacity due to the high ASR severity. In uninfected plants, the ethylene concentration was not affected by Ni or Gl, while the ethylene concentration decreased in inoculated plants; this decrease was more pronounced in plants from the control treatment than in treated inoculated plants. In conclusion, this study sheds light on the role played by both Ni and Gl in ASR control from a physiological perspective. Soybean plants exposed to Ni and Gl were able to maintain high ethylene concentrations and photosynthetic capacity during the P. pachyrhizi infection process; as a result, these plants consumed less of their reserves than inoculated plants not treated with Ni or Gl. 相似文献
13.
The CO2- and H2O-exchange rates between soybean canopies and the atmosphere were measured in three mobile chambers (4 m3). Each chamber stopped at 8 or 9 plots (3.1-m2 ground area) every 25 min. Diurnal and seasonal CO2-exchange rates (CER) of 13 soybean (Glycine max (L.) Merr.) cultivars are summarized here. The oldest two cultivars, released in 1927 and 1932, had the lowest CER values. The CER usually decreased in the afternoon (23.4 vs 27.8 mol CO2 m-2 s-1 at 1.6 mmol photons m-2 s-1), except shortly after rainfall. During a drought, these reductions occurred earlier in the day and were more pronounced. We present evidence for a nonstomatal component of the CO2 flux-reaction system causing CER reductions during a water stress. Daytime CER values were not correlated with temperature (24–34° C), but nighttime values were (15–25° C, r=0.85,* n=41). 相似文献
14.
Effect of shade on plant traits,gas exchange and chlorophyll content in four ramie cultivars 总被引:2,自引:0,他引:2
The objective of this study was to investigate a response to low-light environments in hybrids and commercial cultivars of Boehmeria nivea L. Two hybrids (Chuanzhu 11 and Chuanzhu 8) and two commercial cultivars (Chuanzhu 12 and Chuanzhu 6) of ramie were subjected to a shade treatment for 6, 12, and 18 days. The shade treatment led to a significant decrease in some plant traits and fiber yield in four ramie cultivars, whereas their leaf area and plant height increased. In addition, net photosynthesis and stomatal conductance significantly declined in response to shade, while transpiration rate and intercellular CO2 did not significantly change. Moreover, chlorophyll (Chl) and carotenoid (Car) concentration, Chl/Car, and Chl (a+b) per leaf dry mass significantly increased in the response to shade, while the Chl a/b ratio decreased. Furthermore, Chuanzhu 6 and Chuanzhu 11 were more tolerant to shade than Chuanzhu 12 and Chuanzhu 8, thus, they could be potentially used for management practices and breeding programs. 相似文献
15.
Effect of water stress on leaf photosynthesis,chlorophyll content,and growth of oriental lily 总被引:4,自引:0,他引:4
Y. J. Zhang Z. K. Xie Y. J. Wang P. X. Su L. P. An H. Gao 《Russian Journal of Plant Physiology》2011,58(5):844-850
The photosynthetic characterization of the oriental lily (Lilium) cv. Sorbonne and its response to increasing water stress were analyzed based on the net photosynthetic rate (P
n), stomatal conductance (g
s), intercellular CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and stomatal limitation (Ls) in the Horqin Sandy Land of western China. A photosynthesis-PAR
response curve was constructed to obtain light-compensation and light-saturation points (LCP and LSP), the maximum photosynthetic
rates (P
max) and dark respiration rates (R
D). The growth of lilies in the pots was analyzed after anthesis. Various intensities of water stress (5, 10, and 20 days without
water, and an unstressed control) were applied. The results indicated that drought stress not only significantly decreased
P
n, E, g
s, photosynthetic pigment content (Chl a, Chl b, and Chl (a + b)) and increased intrinsic water use efficiency (WUE), but also altered the diurnal pattern of gas exchange. Drought stress
also affected the photosynthesis (P
n)-PAR response curve. Drought stress increased LCP and R
D and decreased LSP and P
max. There were both stomatal and nonstomatal limitations to photosynthesis. Stomatal limitation dominated in the morning, whereas
nonstomatal limitation dominated in the afternoon. Thus, drought stress decreased potential photosynthetic capacity and affected
the diurnal pattern of gas exchange and P
n-PAR response curves, thereby reducing plant quality (lower plant height, flower length, flower diameter, and leaf area).
Water stress is likely the main limitation to primary photosynthetic process in the lily. Appropriate watering is recommended
to improve photosynthetic efficiency and alleviate photodamage, which will increase the commercial value of the lily in the
Horqin Sandy Land. 相似文献
16.
17.
CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响 总被引:17,自引:3,他引:17
研究了不同土壤氮和土壤水分条件下,大气CO2浓度升高对春小麦光合作用、气孔导度、蒸散和水分利用效率的影响。结果表明,CO2浓度升高,干旱处理的春小麦(Triticum aestivum L.)叶片光合作用速率幅度增加大于湿润处理,随着氮肥用量增加光合速率相应增加,而不施氮脂增加有限;干旱处理气孔导度幅度减少大于湿润处理,不施氮肥的大于氮肥充足的CO2浓度升高,干旱处理的蒸散量减少比湿润处理多,不施氮肥的蒸散量减少较为明显;但干旱处理单叶WUE增加大于湿润处理;随着氮肥用量增加,冠层WUE提高,而不施氮肥的冠层WUE最低。因而CO2浓度升高、光合速率增加和蒸散量减少会减缓干旱的不利影响,增强作物对干旱胁迫的抵御能力。 相似文献
18.
AMY M. BETZELBERGER KELLY M. GILLESPIE JUSTIN M. MCGRATH ROBERT P. KOESTER RANDALL L. NELSON ELIZABETH A. AINSWORTH 《Plant, cell & environment》2010,33(9):1569-1581
Crops losses to tropospheric ozone (O3) in the United States are estimated to cost $1–3 billion annually. This challenge is expected to increase as O3 concentrations ([O3]) rise over the next half century. This study tested the hypothesis that there is cultivar variation in the antioxidant, photosynthetic and yield response of soybean to growth at elevated [O3]. Ten cultivars of soybean were grown at elevated [O3] from germination through maturity at the Soybean Free Air Concentration Enrichment facility in 2007 and six were grown in 2008. Photosynthetic gas exchange, leaf area index, chlorophyll content, fluorescence and antioxidant capacity were monitored during the growing seasons in order to determine if changes in these parameters could be used to predict the sensitivity of seed yield to elevated [O3]. Doubling background [O3] decreased soybean yields by 17%, but the variation in response among cultivars and years ranged from 8 to 37%. Chlorophyll content and photosynthetic parameters were positively correlated with seed yield, while antioxidant capacity was negatively correlated with photosynthesis and seed yield, suggesting a trade‐off between antioxidant metabolism and carbon gain. Exposure response curves indicate that there has not been a significant improvement in soybean tolerance to [O3] in the past 30 years. 相似文献
19.
J. Zrůst K. Vacek J. Hála I. Janáčková F. Adamec M. Ambrož J. Dian M. Vacha 《Biologia Plantarum》1994,36(2):209-214
Net photosynthetic rate (PN), productivity and the first phases of the fluorescence induction curve were investigated in leaves of two potato cultivars exposed to water stress. Water stress applied to potato plants at the beginning of their development (planting-bud formation) increased productivity but decreased PN and variable fluorescence (Fv) of leaves. The short-term influence of water stress on the same plants also diminished the Fv. 相似文献
20.
Field trials under rain-fed conditions at the International Center for Tropical Agriculture (CIAT) in Colombia were conducted
to study the comparative leaf photosynthesis, growth, yield, and nutrient use efficiency in two groups of cassava cultivars
representing tall (large leaf canopy and shoot biomass) and short (small leaf canopy and shoot biomass) plant types. Using
the standard plant density (10,000 plants ha−1), tall cultivars produced higher shoot biomass, larger seasonal leaf area indices (LAIs) and greater final storage root yields
than the short cultivars. At six months after planting, yields were similar in both plant types with the short ones tending
to form and fill storage roots at a much earlier time in their growth stage. Root yield, shoot and total biomass in all cultivars
were significantly correlated with seasonal average LAI. Short cultivars maintained lower than optimal LAI for yield. Seasonal
P
N, across cultivars, was 12% greater in short types, with maximum values obtained in Brazilian genotypes. This difference in
P
N was attributed to nonstomatal factors (i.e., anatomical/biochemical mesophyll characteristics). Compared with tall cultivars, short ones had 14 to 24 % greater nutrient
use efficiency (NUE) in terms of storage root production. The lesser NUE in tall plants was attributed mainly to more total
nutrient uptake than in short cultivars. It was concluded that short-stemmed cultivars are superior in producing dry matter
in their storage roots per unit nutrient absorbed, making them advantageous for soil fertility conservation while their yields
approach those in tall types. It was recommended that breeding programs should focus on selection for more efficient short-
to medium-stemmed genotypes since resource-limited cassava farmers rarely apply agrochemicals nor recycle residual parts of
the crop back to the soil. Such improved short types were expected to surpass tall types in yields when grown at higher than
standard plant population densities (>10,000 plants ha−1) in order to maximize irradiance interception. Below a certain population density (<10,000 plants ha−1), tall cultivars should be planted. Findings were discussed in relation to cultivation and cropping systems strategies for
water and nutrient conservation and use efficiencies under stressful environments as well as under predicted water deficits
in the tropics caused by trends in global climate change. Cassava is expected to play a major role in food and biofuel production
due to its high photosynthetic capacity and its ability to conserve water as compared to major cereal grain crops. The interdisciplinary/interinstitutions
research reported here, including an associated release of a drought-tolerant, short-stem cultivar that was eagerly accepted
by cassava farmers, reflects well on the productivity of the CIAT international research in Cali, Colombia. 相似文献