首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to determine the effects of copper sulfate (CuSO4) on the chemical composition of basil (Ocimum basilicum L. ‘Green’) using static headspace extraction. The basil was cultivated in vitro and ex vitro. The sowing was completed in trays, and the seedlings were transplanted to pots and grown in a protected environment for 180 d. For in vitro cultivation, the seeds were placed on Murashige and Skoog (MS) medium enriched with growth regulators, sucrose, agar, and CuSO4 (at 0 μM [control], 25 μM, or 75 μM). Volatile organic compounds emitted from the excised leaves were collected by the static headspace technique, and identified by gas chromatography coupled to mass spectrometry (GC/MS). Twenty-six compounds were identified in the leaves harvested from the plants cultivated in vitro, while 11 compounds were identified in the leaves sampled from the ex vitro plants. Oxygenated monoterpenes were the main compounds found in plants cultivated ex vitro. Phenylpropanoids predominated in the control and the 25 μM CuSO4 treatments. The main compounds found were methyl eugenol (52.03%) and eugenol (20.66%). For the 75 μM CuSO4 treatment, the major compounds detected were linalool (28.14%) and 1.8-cineole (15.7%). Volatile secondary metabolites of basil cultivated in vitro with CuSO4 were easily isolated and rapidly obtained. The results of this study demonstrate the feasibility and potential of using copper treatments to reduce the impact of seasonality on essential oil production.  相似文献   

3.
We examined the effect of concentration on nitrogen uptake patterns for a suburban stream in Maryland and addressed the question: How does NO3 ? uptake change as a function of concentration and how do uptake patterns compare with those found for NH4 +? We applied a longitudinal (stream channel corridor) approach in a forested stream section and conducted short-term nutrient addition experiments in late summer 2004. In the downstream direction, NO3 ? concentrations decreased because of residential development in headwaters and downstream dilution; NH4 + concentrations slightly increased. The uptake patterns for NO3 ? were very different from NH4 +. While NH4 + had a typical negative relationship between first-order uptake rate constant (K c ) and stream size, NO3 ? had a reverse pattern. We found differences for other metrics, including uptake velocity (V f ) and areal uptake rate (U). We attributed these differences to a stream size effect, a concentration effect and a biological uptake capacity effect. For NO3 ? these combined effects produced a downstream increase in K c , V f and U; for NH4 + they produced a downstream decrease in K c and V f , and a not well defined pattern for U. We attributed a downstream increase in NO3 ? uptake capacity to an increase in hyporheic exchange and a likely increase in carbon availability. We also found that K c and V f were indirectly related with concentration. Similar evidence of ‘nutrient saturation’ has been reported in other recent studies. Our results suggest that higher-order uptake models might be warranted when scaling NO3 ? uptake across watersheds that are subject to increased nitrogen loading.  相似文献   

4.

Key message

We investigated a Frankia Alnus sieboldiana symbiosis, including the minimum inoculum dose for constant nodulation, the period of time to nodulation after inoculation, and the effects of N on nodulation.

Abstract

Frankia is a nitrogen-fixing actinomycete that forms root nodules in some dicotyledonous plants, which are called actinorhizal. We studied nodule formation in Alnus sieboldiana, an actinorhizal plant, after inoculation with a Frankia isolate to establish techniques for Frankia inoculation and the cultivation of inoculated plants. Root nodules formed on seedlings of A. sieboldiana by 2 weeks after inoculation, and N2 fixation measured by acetylene reduction activity started 3 weeks after inoculation. Nodulation was observed after inoculation with a Frankia isolate at 0.001 μL packed cell volume (pcv). The number of nodules formed on the seedlings inoculated with Frankia at more than 0.05 μL pcv was not significantly different. Nodule development and N2 fixation were reduced when inoculated seedlings were treated weekly with 15 mM NH4NO3-N. In contrast, treatment with 3.75 or 0.9375 mM NH4NO3-N did not inhibit nodule development or N2 fixation of inoculated seedlings by 15 weeks of N treatment.
  相似文献   

5.
Effect of selenium-containing biocomposites obtained from submerged cultures of macrobasidiomycetes Ganoderma applantum, G. cattienensis, G. colossus G. lucidum, G. neojaponicum, and G. valesiacum, on plant pathogenic bacteria Clavibacter michiganensis ssp. sepedonicus (Cms), Micrococcus luteus, Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum, Pseudomonas fluorescens, Pseudomonas viridiflava, and Xanthomonas campestris was studied. Oxopropyl-4-hydroxychromenones were used as components of the fungal nutrient media. The bacteriostatic and bactericidal activity of the Se-containing and Se-free substances of fungal origin against plant pathogenic bacteria was determined using colony-forming units count, the agar well diffusion method, and by turbidity measurements of bacterial suspensions. The composites produced from the extracellular metabolites of G. cattienensis SIE1302 with 4-hydroxy-3-(3-oxo-1,3-diphenyl propyl)-chromen-2-one (S(45)), and of G. lucidum SIE1303 with 4-hydroxy-3-(3-oxo-1-(3-nitrophenyl)-3-phenylpropyl)-chromen-2-one (S(NO2)) possessed the most pronounced antibacterial action against Cms. The composites produced from the isolates of G. valesiacum 120702 with S(NO2) showed the maximal antibacterial activity against Xanthomonas campestris B-610. High antimicrobial effect of G. lucidum 1315 with S(NO2) against Xanthomonas campestris B-610 and of G. colossus SIE1301 against Pseudomonas fluorescens EL-2.1 was revealed. The pioneering information on the biological activity of coumarin series compounds in their application for producing the substances of fungal origin was obtained.  相似文献   

6.
The effects of multi-wall carbon nanotubes (MWCNTs) on plant growth and Cd/Pb accumulation was investigated on seedlings of three plant species including Brassica napus L., Helianthus annus L. and Cannabis sativa L. The experiment consisted of MWCNTs on three concentration levels (0, 10, 50 mg/L) and 200 μM CdCl2 or 500 μM Pb(NO3)2. MWCNTs application effectively improved root and shoot growth inhibited by Cd and Pb salts. In B. napus, total chlorophyll (Chl) content increased by both MWCNTs 10 and 50 mg/L exposure under cadmium or lead stress. MWCNT 10 mg/L mitigated the deleterious effects of Cd ions on total chlorophyll content of H. annus and C. sativa. Wherease higher concentration of MWCNTs decreased Chl content under either Cd or Pb treatments on sunflower seedlings. MWCNT10 effectivly raised cadmium accumulation in seedlings of all three species. MWCNT10 and 50 mg/L also caused higher Pb accumulation in canola and cannabis seedlings, respectively. Based on the results, it seems that the effects of MWCNTs on growth parameters and heavy metal accumulation in plant seedlings is strongly depends on heavy metal type, MWCNTs concentration and plant species.  相似文献   

7.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

8.
Terminalia arjuna (Ta) bark contains various natural antioxidants and has been used to protect animal cells against oxidative stress. In the present study, we have examined alleviating effects of Ta bark aqueous extract against Ni toxicity in rice (Oryza sativa L.). When rice seedlings were raised for 8 days in hydroponics in Yoshida nutrient medium containing 200 μM NiSO4, a decline in height, reduced biomass, increased Ni uptake, loss of root plasma membrane integrity, increase in the level of O2˙?, H2O2 and ˙OH, increased lipid peroxidation, decline in photosynthetic pigments, increase in the level of antioxidative enzymes superoxide dismutase, catalase and glutathione peroxidase and alterations in their isoenzyme profile patterns were observed. Transmission electron microscopy (TEM) showed damage to chloroplasts marked by disorganised enlarged starch granules and disrupted thylakoids under Ni toxicity. Exogenously adding Ta bark extract (3.2 mg ml?1) to the growth medium considerably alleviated Ni toxicity in the seedlings by reducing Ni uptake, suppressing generation of reactive oxygen species, reducing lipid peroxidation, restoring level of photosynthesis pigments and ultrastructure of chloroplasts, and restoring levels of antioxidative enzymes. Results suggest that Ta bark extract considerably alleviates Ni toxicity in rice seedlings by preventing Ni uptake and reducing oxidative stress in the seedlings.  相似文献   

9.
Nutrient concentration in wheat and soil under allelopathy treatments   总被引:2,自引:0,他引:2  
Allelopathy is related to soil nutrient availability and allelochemicals can change the soil and therefore the plant nutrient status. Wheat is one of the most important crops for the production of human food in the world. Alhagi maurorum and Cardaria draba are the most important weeds in wheat fields. We performed experiments to assess the allelopathic effect of A. maurorum and C. draba shoots on mineral nutrient concentrations in pot-grown wheat plants and soil. The presence of dry powder of A. maurorum and C. draba shoots reduced concentrations of macronutrients (NO3 ?, K+, Ca2+ and P) and micronutrients (Fe2+ and Cu2+) in roots and shoots of wheat plants, whereas it did not affect concentrations of Mg2+, Mn2+ and Zn2+. Allelopathic effect of A. maurorum was significantly greater than that of C. draba. There was a significantly positive correlation between wheat growth and ion concentration. There was a significantly negative correlation between the soil nutrient concentration and plant nutrient concentration across the treatments. These results suggest that allelopathy increases the nutrient availability in the soil because of the decrease in absorption by plants.  相似文献   

10.
Fluorescence of the marine alga Thalassiosira weissflogii (Grunow) Fryxell et Hasle with open (F o ) and closed (F m ) reaction centers of photosystem 2 (PS 2) and its relative variable fluorescence (F v/F m ) were measured at various levels of inorganic nitrogen. A significant heterogeneity of the population in terms of these parameters was revealed. Some cells within the population were more sensitive to nitrogen deficiency, and their photosynthetic apparatus was disrupted to a greater extent. The cells within a population also differed in terms of their ability to recover after incubation at low nitrogen levels. Enhancement of nitrogen deficiency resulted in an increase in the variability of the F o and F v/F m values of the cells. Fluorescence variability decreased at a less pronounced deficiency. Fluorescence variability should be taken into consideration in the studies concerning responses of algae to changes in nutrient contents.  相似文献   

11.
This paper identifies the potential molecular markers predicting the impact of nTiO2 on plants and explores the new statistical correlations between the biomarkers and growth parameters. The quantitative mRNA expression of the three genes involved in DNA mismatch repair (MLH1) and cell division (PCNA1 and PCNA2) in Zea mays and Triticum aestivum seedlings were related to the growth parameters measured in response to five nTiO2 treatments. The results indicated that the higher concentrations were harmless to Z. mays but not to T. aestivum. nTiO2 treatments increased the total protein levels in both species and significantly inhibited the percentage of DPPH radical scavenging in Z. mays compared with T. aestivum seedlings. The exposure to both 50 μg/ml and 30 μg/ml concentrations of nTiO2 significantly induced the expression of MLH1 and PCNA1 genes in both species; however, the exposure to 30 μg/ml of nTiO2 also significantly induced the expression of PCNA2 genes in T. aestivum. The exposure to 50, 70 and 140 μg/ml significantly inhibited the expression of PCNA2 in both species, while 70 and 140 μg/ml repressed the expression of MLH1 and PCNA1 in the seedlings of Z. mays. The induction and repression of the expression of the three genes were correlated with some growth parameters and biological indices in both species. This key finding suggests that the above genes may play a vital role in mediating plant stress response to nTiO2 and could be used as sensitive molecular biomarkers indicative of the oxidative stress of nTiO2 exposure.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

13.
In this study, the effect of irrigation intervals (drought stress) on growth, predawn xylem water potential (Ψ w), the osmotic potential at full turgor (Ψπ 100), the osmotic potential at the turgor loss point (Ψπ TLP), osmotic adjustment and osmotic solutes (soluble sugars and proline) of Pinus pinea L. seedlings were examined. An experiment was carried out under greenhouse conditions using four watering treatments (control, 7-, 14- and 21-day irrigation intervals) in the first growth season; from mid-July to early November. Results showed that irrigation interval had significant effect on growth characteristics, Ψ w, water relation parameters, and osmotic solutes. The increasing irrigation interval significantly decreased the seedling height, root collar diameter, root, stem and needle dry weight, number of lateral branches, root percentage, root:shoot ratio and diameter:height ratio. Ψ w and total soluble sugars decreased while proline content increased with the increase of drought stress. The Ψπ 100 and Ψπ TLP significantly decreased in drought-stressed seedlings compared to control (no stress) seedlings. The results suggest that the impact of drought stress increased with the increase of irrigation interval. Therefore, in the drought-stressed P. pinea seedlings were indicated osmotic adjustment by increasing the proline content and decreasing Ψπ 100 and Ψπ TLP during drought stress. Growth decreased under drought stress conditions in P. pinea seedlings.  相似文献   

14.
The activity of a key enzyme of the cytochrome component of the respiratory chain (cytochrome oxidase), the quantitative redistribution of mitochondrial cytochromes b, c 1, c, and aa 3, as well as the activities of the key enzymes of cytochrome heme metabolism (δ-aminolevulinate synthase and heme oxygenase) under conditions of acetaminophen-induced liver injury were studied on the background of dietary protein deprivation. Under conditions of acetaminophen-induced hepatitis that developed on the background of alimentary protein deprivation, an inhibition of cytochrome oxidase activity and a decrease in the contents of mitochondrial cytochromes on the background of an increase in the δ-aminolevulinate synthase and heme oxygenase activity were observed. In animals with a toxic liver injury that were kept under conditions of dietary protein deprivation, the contents of mitochondrial cytochromes b, c 1, c, and aa 3 progressively decreased, which was accompanied by an increase in heme oxygenase activity, whereas δ-aminolevulinate synthase activity remained at the control level. It was concluded that dietary protein deprivation is a critical factor for the development of disturbances in the structural-functional integrity of the cytochrome component of the respiratory chain. The identified changes can be considered as a possible mechanism that underlies the disturbance in the function of the energy biotransformation system under conditions of dietary protein deprivation.  相似文献   

15.
In this paper, we characterized a differentially expressed receptor-like cytoplasmic kinase XCRK, which confers resistance to bacterial leaf streak (BLS). We analyzed the tissue expression of XCRK and showed that XCRK was widely expressed in multiple rice (Oryza sativa) organs, including internodes, roots, leaves and flowers. In addition, the expression of XCRK was significantly induced by ABA, salt and H2O2 treatments, suggesting its function in these pathways. The XCRK-overexpressing transgenic seedlings exhibited higher tolerance to Xanthomonas oryzae pv.oryzicola (Xoc) compared with the wild-type seedlings. Furthermore, XCRK-overexpressing seedlings showed stronger antioxidant capacity with reduced MDA and H2O2 content and higher antioxidant enzyme activities. It has been hypothesized that the enhanced Xoc tolerance was attributed to the improved expression of resistance-responsive factors positively regulated by XCRK. In accordance with this, the expression of resistance and oxidation-related genes Wrky77, Wrky13, PAL1, PR5, Fe-SOD and SodCc2 were up-regulated by the overexpression of XCRK, which might contribute collectively to the increased Xoc tolerance. Overall, overexpression of XCRK could enhance the antioxidant capacity and Xoc tolerance in rice.  相似文献   

16.
Aquatic vegetation of Hydrochari-Lemnetea and Potametea classes in the Danube-Tisza-Danube hydrosystem (Hs DTD) was studied in 2009–2012, by applying the standard Braun-Blanquet method. The canal network vegetation comprises 14 associations, with Trapetum natantis and Ceratophylletum demersi being the most widely distributed. Hs DTD is also a habitat for several important endangered species, which serve as edificators of the following phytocenoses: Nymphaeetum albae, Nymphaeetum albo-luteae, Nymphoidetum peltatae, Trapetum natantis, Lemno-Spirodeletum, Salvinio-Spirodeletum polyrrhizae, Lemno-Utricularietum vulgaris, Potametum nodosi, Myriophyllo-Potametum and Najadetum marinae. In the studied vegetation, we also found an invasive phytocenosis Elodeetum canadensis that did not have an expanding tendency, and Ceratophyllo demersi-Vallisnerietum spiralis that had this tendency, which made monitoring its stands necessary. Physico-chemical analyses of water, conducted at localities in which the studied phytocenoses thrive, revealed that the development and distribution of most phytocenoses is closely linked with specific habitat conditions. Among the studied parameters, the most significant for the phytocenoses differentiation were: pH, alkalinity, COD-MnO4, BOD5, NO 3 ? , NO 2 ? , PO 4 3? and the concentration of total phosphorus.  相似文献   

17.
Water deficit is one of the key factors that limits the carbon (C) assimilation and productivity of plants. The effect of variable water deficit on recently root-derived bicarbonate assimilation in Camptotheca acuminate seedlings was investigated. Three-month-old seedlings were subjected to three water regimes, well-watered (WW), moderate stress (MS), and severe stress (SS) induced by polyethyleneglycol, in conjunction with relatively high (H) and low (L) natural 13C-abundance of NaHCO3-labeled treatments in hydroponics for 14 days. The δ13C of the newly expanded leaves in H were generally more enriched in heavy isotopes than were those in L, indicative of the involvement of bicarbonate in aboveground tissues. The C isotope fractionation of newly expanded leaves relative to air (?13Cair-leaves) ranged from 17.78 to 21.78‰ among the treatments. The ?13Cair-leaves under the MS and SS treatments in H were both more negative than was that in L. A linear regression between Ci/Ca and ?13Cair-leaves in both L and H were different from the theoretical regression. On the basis of the two end-member mixing model, the proportion of fixed CO2 supplied from bicarbonate contributing to the total photosynthetically inorganic C assimilation were 10.34, 20.05 and 16.60% under the WW, MS, and SS treatments, respectively. These results indicated that the increase in water deficit decreased the atmospheric CO2 gain but triggered a compensatory use of bicarbonate in C. acuminate seedlings.  相似文献   

18.
After the accident at the Fukushima Dai-ichi Nuclear Power Plant in 2011, high activities of radiocaesium have been reported in wild mushrooms in Japan. Fungi play an important role in the dynamics of radiocaesium in forest ecosystems. We examined the contents of caesium (Cs), rubidium (Rb), and potassium (K) in the mycelium of 15 isolates of ectomycorrhizal (EM) fungi and nine isolates of saprotrophic (SA) fungi in a synthetic medium with either ammonium chloride (NH4Cl) or sodium nitrate (NaNO3), supplemented with 1 ppm caesium chloride and rubidium chloride. The mycelia were harvested after 8 weeks of incubation, and the contents of Cs, Rb, and K were measured by inductively coupled plasma mass spectrometry. The dry weight of the mycelium in the medium with NH4 was significantly higher than that with NO3, although some EM species, Hebeloma, Astraeus, Scleroderma, and Pisolithus, grew well in the medium with NO3. Among SA species, Crucibulum and Cyathus grew in the medium with NO3. The uptakes of Cs, Rb, and K by Suillus, Pisolithus, and Rhizopogon were higher than that in other EM and SA species when they grew on the medium with NH4, while the uptakes of these elements by Astraeus and Scleroderma were higher than those by other species grown on the medium with NO3. The content of Rb was positively correlated with Cs (r = 0.85, p < 0.001) and K (r = 0.51, p < 0.001). The accumulation of Cs, Rb, and K was differently affected by the N source and fungal species.  相似文献   

19.
20.

Background

Mepiquat chloride (MC) is a plant growth regulator widely used in cotton (Gossypium hirsutum L.) production to suppress excessive vegetative growth, increase root growth and avoid yield losses. To increase root growth, cotton seeds were treated with MC to increase the number of lateral root (LRs) and improve drought resistance. An increased indole-3-acetic acid (IAA) pool appeared to correlate with LR growth, and the principal source of IAA in germinating seeds is IAA conjugates. Here, the role of IAA homeostasis and signaling was investigated in cotton seedlings treated with MC.

Results

In the present research, MC significantly increased endogenous IAA levels in the roots, which promoted lateral root initiation (LRI) by upregulating GhARF7/19 and GhLBD18s and subsequently increasing LR quantity and elongation. The levels of IAA-amide conjugates significantly decreased in MC-treated seedlings compared with untreated control seedlings. Sixteen members of the cotton IAA amidohydrolase (IAH) gene family were identified, of which GhIAR3a, GhIAR3b, GhILR1, GhILL3 and GhILL6 were expressed during cotton seed germination. Compared with those in untreated control seedlings, the expression levels of GhIAR3a, GhIAR3b, GhILR1 and GhILL6 in the MC-treated seedlings were markedly elevated. The GhIAR3a/b and GhILR1 genes were cloned and expressed in Escherichia coli; these recombinant proteins exhibited hydrolytic activity that could cleave IAA-phenyalanine (Phe), IAA-methionine (Met), IAA-glycine (Gly) and IAA-leucine (Leu) in vitro, while only GhIAR3a hydrolyzed IAA-alanine (Ala) efficiently. The content of GhIAR3a, as detected via an established sandwich enzyme-linked immunosorbent assay (ELISA), increased in the MC-treated seedlings compared with the untreated control seedlings. In addition, the Arabidopsis iar3 mutant was less responsive to MC-induced LR growth than was wild type.

Conclusions

These findings suggested that MC application could mediate IAA homeostasis via increased IAA levels from IAA-amide conjugate hydrolysis by accelerating IAH gene expression, which might promote LRI and increase the LR quantity and elongation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号