首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
2.
3.
4.
5.
6.
7.
Potato (Solanum tuberosum) is an important crop around the world, and accounts for a significant amount of the food consumed by humans. However, little information is available about potato miRNAs which play important regulatory roles in plant growth and development. In the present study, computational prediction of potential miRNAs from potato revealed 71 miRNAs belonging to 48 families. Amongst these 71 mRNAs, 65 were predicted for the first time. Most potato miRNA families have one to three members, and sequence analysis showed that the candidate pre-miRNA sequences varied from 48 to 224 bp in length. To verify the predicted miRNAs, specific stem-loop RT primers were designed and real-time PCR assays were used to profile the expression levels of seven miRNAs from different tissues of potato. The results showed that all the selected miRNAs were successfully amplified. Most of them had their highest expression levels in leaves, and the lowest levels in the stem, while miR159 and miR164 presented a different expression pattern. The specific expression levels of each miRNAs in the tested tissues may be related to their particular functions in regulating potato vegetative growth and organ development.  相似文献   

8.
9.
10.
11.
12.
13.
microRNAs (miRNAs) are a class of negative regulators that take part in many processes such as growth and development, stress responses, and metabolism in plants. Recently, miRNAs were shown to function in plant nutrient metabolism. Moreover, several miRNAs were identified in the response to nitrogen (N) deficiency. To investigate the functions of other miRNAs in N deficiency, deep sequencing technology was used to detect the expression of small RNAs under N-sufficient and -deficient conditions. The results showed that members from the same miRNA families displayed differential expression in response to N deficiency. Upon N starvation, the expression of miR169, miR171, miR395, miR397, miR398, miR399, miR408, miR827, and miR857 was repressed, whereas those of miR160, miR780, miR826, miR842, and miR846 were induced. miR826, a newly identified N-starvation-induced miRNA, was found to target the AOP2 gene. Among these N-starvation-responsive miRNAs, several were involved in cross-talk among responses to different nutrient (N, P, S, Cu) deficiencies. miR160, miR167, and miR171 could be responsible for the development of Arabidopsis root systems under N-starvation conditions. In addition, twenty novel miRNAs were identified and nine of them were significantly responsive to N-starvation. This study represents comprehensive expression profiling of N-starvation-responsive miRNAs and advances our understanding of the regulation of N homeostasis mediated by miRNAs.  相似文献   

14.
Flowering is the primary trait affected by ambient temperature changes. Plant microRNAs (miRNAs) are small non-coding RNAs playing an important regulatory role in plant development. In this study, to elucidate the mechanism of flowering-time regulation by small RNAs, we identified six ambient temperature-responsive miRNAs (miR156, miR163, miR169, miR172, miR398 and miR399) in Arabidopsis via miRNA microarray and northern hybridization analyses. We also determined the expression profile of 120 unique miRNA loci in response to ambient temperature changes by miRNA northern hybridization analysis. The expression of the ambient temperature-responsive miRNAs and their target genes was largely anticorrelated at two different temperatures (16 and 23°C). Interestingly, a lesion in short vegetative phase (SVP), a key regulator within the thermosensory pathway, caused alteration in the expression of miR172 and a subset of its target genes, providing a link between a thermosensory pathway gene and miR172. The miR172-overexpressing plants showed a temperature-independent early flowering phenotype, suggesting that modulation of miR172 expression leads to temperature insensitivity. Taken together, our results suggest a genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs under non-stress temperature conditions.  相似文献   

15.
16.
17.
To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19–24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
MicroRNAs (miRNAs) act as down-regulators of gene expression, and play a dominant role in eukaryote development. In Arabidopsis thaliana, DICER-LIKE 1 (DCL1) is the main processor in miRNA biogenesis, and dcl1 mutants show various developmental defects at the early stage of embryogenesis or at gamete formation. However, miRNAs responsible for the respective developmental stages of the dcl1 defects have not been identified. Here, we developed a DCL1-independent miRNA expression system using the unique DCL4-dependent miRNA, miR839. By replacing the mature sequence in the miR839 precursor sequence with that of miR172, one of the most widely conserved miRNAs in angiosperms, we succeeded in expressing miR172 from a chimeric miR839 precursor in dcl1-7 plants and observed the repression of miR172 target gene expression. In parallel, the DCL4-dependent miR172 expression rescued the late flowering phenotype of dcl1-7 by acceleration of flowering. We established the DCL1-independent miRNA expression system, and revealed that the reduction of miR172 expression is responsible for the dcl1-7 late flowering phenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号