首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The drought-tolerant ‘Ningchun 47’ (NC47) and drought-sensitive ‘Chinese Spring’ (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated and recognised using two-dimensional gel electrophoresis. In total, 101 DAP spots representing 77 unique proteins were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These proteins were allocated to 10 groups according to putative functions, which were mainly involved in carbon metabolism (23.4%), photosynthesis/respiration (22.1%) and stress/defence/detoxification (18.2%). Some drought stress-related proteins in NC47, such as enolase, 6-phosphogluconate dehydrogenase, Oxygen-evolving enhancer protein 2, fibrillin-like protein, 2-Cys peroxiredoxin BAS1 and 70-kDa heat shock protein, were more upregulated than those in CS. Multivariate principal components analysis revealed obvious differences between the control and treatments in both NC47 and CS, while cluster analysis showed that the DAPs displayed five and six accumulation patterns in NC47 and CS, respectively. Protein–protein interaction network analysis showed that some key DAPs, such as 2-Cys peroxiredoxin BAS1, RuBisCO large subunit-binding protein, 50S ribosomal protein L1, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase isoenzyme and 70-kDa heat shock protein, with upregulated accumulation in NC47, had complex interactions with other proteins related to amino acid metabolism, carbon metabolism, energy pathway, signal transduction, stress/defence/detoxification, protein folding and nucleotide metabolism. These proteins could play important roles in drought-stress tolerance and contribute to the relatively stronger drought tolerance of NC47.  相似文献   

2.
Roots, leaves, and intermediate sections between roots and leaves (ISRL) of wheat seedlings show different physiological functions at the protein level. We performed the first integrative proteomic analysis of different tissues of the drought‐tolerant wheat cultivar Hanxuan 10 (HX‐10) and drought‐sensitive cultivar Chinese Spring (CS) during a simulated drought and recovery. Differentially expressed proteins (DEPs) in the roots (122), ISRLs (146), and leaves (163) showed significant changes in expression in response to drought stress and recovery. Numerous DEPs associated with cell defense and detoxifications were significantly regulated in roots and ISRLs, while in leaves, DEPs related to photosynthesis showed significant changes in expression. A significantly larger number of DEPs related to stress defense were upregulated in HX‐10 than in CS. Expression of six HSPs potentially related to drought tolerance was significantly upregulated under drought conditions, and these proteins were involved in a complex protein–protein interaction network. Further phosphorylation analysis showed that the phosphorylation levels of HSP60, HSP90, and HOP were upregulated in HX‐10 under drought stress. We present an overview of metabolic pathways in wheat seedlings based on abscisic acid signaling and important protein expression patterns.  相似文献   

3.
The effects of AlCl3 on Hibisucs moscheutos seed germination and growth were investigated to evaluate its hardiness to Aluminum (Al), in compassion with Carazinho, a wheat genotype tolerant to Al, and Egret, agenotype sensitiveto Al . For H. moscheutos and two wheat genotypes, our results indicated that germination was insensitive to AlCl3 until at 500μmol/L. AlCl3 of 50μmol/L inhibited the elongation of primary and lateral roots significantly, but had less effect on the number of lateral roots. There was no difference of root elongation between the H. moscheutos and wheat, but the lateral roots of H. moscheutos were more tolerant to Al than that of wheat genotypes. Under AlCl3 of 50μmol/L, the reduction of root biomass was significant in wheat genotypes, but not in H. moscheutos, comparing to their control, suggesting that H. moscheutos is more tolerant to Al than the two wheat genotypes, and that Al has different effects on the growth of primary and lateral roots in both H. moscheutos and wheat .  相似文献   

4.
5.
盐胁迫对金牌美达丽和猎狗种子萌发的影响   总被引:20,自引:2,他引:20  
卢静君  李强  多立安 《植物研究》2002,22(3):328-332
用不同浓度的NaCl、KCl、MgSO4和3种盐的复合溶液胁迫金牌美达丽和猎狗种子,观察其发芽率和萌发后子叶及胚根生长情况,对其进行生态阈限分析。结果表明:金牌美达丽和猎狗种子萌发对盐生境的适应性均很强。低浓度NaCl、KCl及复合盐溶液对猎狗种子萌发有促进作用。随盐胁迫强度上升,发芽率呈逐渐下降趋势,高浓度盐明显延缓种子的初始萌发时间,抑制幼苗正常生长。高浓度盐显著降低种子发芽率,但不同盐分对种子发芽率影响不显著。MgSO4溶液对种子发芽率没有显著抑制现象,但对金牌美达丽胚根的生长有明显抑制作用。  相似文献   

6.
7.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   

8.
为了探讨14-3-3基因在小麦逆境胁迫应答中的调控作用,利用RACE技术克隆了两个包含完整编码框的14-3-3基因(命名为Ta14R1和Ta14R2),其中Ta14R1 cDNA长999 bp,编码262个氨基酸,而Ta14R2 cDNA长897 bp,编码261个氨基酸。Ta14R1/Ta14R2-GFP融合载体瞬时表达结果显示,Ta14R1和Ta14R2蛋白均定位于细胞质和细胞膜,但不在叶绿体中。荧光定量PCR分析表明,Ta14R1和Ta14R2均在萌发1 d的胚芽鞘中表达量最高;在高温、低温、模拟干旱和ABA处理下,两个基因在小麦的根和叶中都受胁迫诱导而且显著上调表达,推测这两个14-3-3基因通过依赖ABA的非生物胁迫响应途径发挥作用,可能参与了小麦中高温、低温和干旱胁迫的耐受调节过程。  相似文献   

9.
10.
通过水培实验研究了0、10、20、50、70和100 mg.L-1 Hg2+和65 U.mL-1的过氧化物酶(POD)混合浸种对小麦(Triticum aestivum L.)萌发及幼苗生长过程中的10个形态和生理生化指标的影响。结果表明:施加外源POD可明显提高种子发芽率、植株日均增重和幼苗叶片的可溶性蛋白含量,增加幼苗叶片内源超氧物歧化酶(SOD)和POD的活性,拮抗Hg2+胁迫对种子发芽率、苗高、日均增重及叶片可溶性蛋白含量的不利影响,Hg2+浓度较高时(≥50 mg.L-1),对种子发芽率和日均增重的拮抗作用更明显,并对较低浓度Hg2+(≤20 mg.L-1)胁迫引起的叶片SOD活性的上升和低于100 mg.L-1的Hg2+胁迫引起的叶片 POD活性的上升有进一步的促进作用;然而对幼苗平均最长根长度、侧根数和幼苗叶片叶绿素含量则无明显影响。  相似文献   

11.
12.
13.
盐碱地高盐分会降低种子活力、抑制萌发出苗,严重制约盐碱地区花生生产和产业发展。种子萌发过程中物质代谢对种子发芽及植株形态建成至关重要,逐渐成为评价种子活力和品质的重要指标。以不同萌发期花生种子为研究对象,利用生理指标和高效液相色谱串联质谱(LC-MS/MS)分析方法,研究了盐胁迫下花生种子不同萌发期主要营养物质含量和差异代谢物的变化。种子吸水萌发促进了脂肪、蛋白质、可溶性糖代谢,随萌发时间延长,脂肪和可溶性糖含量逐渐降低,可溶性蛋白质含量呈先降后升的变化趋势。主成分分析和偏最小二乘法判别分析表明盐胁迫与对照组间代谢物差异较大,暗示盐胁迫对花生种子萌发期物质代谢影响较大。利用VIP值分析和KEGG pathway预测分析显示:正常条件下,花生种子吸水膨胀期的差异代谢物较少,未鉴定到富集的KEGG pathway;而胚根伸长期差异代谢物主要富集于12个KEGG pathway,表明萌发后期物质代谢较前期旺盛。盐处理显著提高多种差异代谢物表达水平,其中渗透保护物甜菜碱和脯氨酸差异明显;另外,盐胁迫下吸水膨胀和胚根伸长两时段的差异代谢物显著增多,分别富集到26和31个KEGG pathway。盐胁迫显著促进了能量代谢、甘油磷脂代谢、谷胱甘肽代谢以及芥子油苷生物合成途径等相关通路,推测其与盐胁迫下花生种子萌发期抗逆有关。甜菜碱和脯氨酸可能是花生种子萌发期适应盐胁迫的关键代谢物,甘油磷脂代谢、谷胱甘肽代谢以及芥子油苷生物合成等途径可能是重要的代谢调控通路。试验结果可为促进盐胁迫下花生种子萌发出苗探索新途径、新方法,以及提高盐碱地花生出苗率提供理论依据和参考价值。  相似文献   

14.
为研究磁化水对作物的生物学效应,本文详细分析了磁化水处理对小麦种子萌发、幼苗生长和生理特性的影响。研究结果显示:磁化水处理小麦的种子发芽参数与对照相比无显著差异;磁化水处理对小麦的株高、根长、地上部和根部鲜重等生长参数也无显著影响;同样,磁化水处理在叶片色素含量、可溶性糖、可溶性蛋白质含量、含水量、细胞汁液渗透势等重要生理特征参数方面也未显示出显著差异。此外,磁化水并未显著影响小麦叶片的光合作用。综上所述,磁化水处理对小麦种子萌发和幼苗生长无明显的生物学效应。  相似文献   

15.
16.
Proteomic analysis of rice (Oryza sativa) seeds during germination   总被引:8,自引:0,他引:8  
Yang P  Li X  Wang X  Chen H  Chen F  Shen S 《Proteomics》2007,7(18):3358-3368
Although seed germination is a major subject in plant physiological research, there is still a long way to go to elucidate the mechanism of seed germination. Recently, functional genomic strategies have been applied to study the germination of plant seeds. Here, we conducted a proteomic analysis of seed germination in rice (Oryza sativa indica cv. 9311) - a model monocot. Comparison of 2-DE maps showed that there were 148 proteins displayed differently in the germination process of rice seeds. Among the changed proteins, 63 were down-regulated, 69 were up-regulated (including 20 induced proteins). The down-regulated proteins were mainly storage proteins, such as globulin and glutelin, and proteins associated with seed maturation, such as "early embryogenesis protein" and "late embryogenesis abundant protein", and proteins related to desiccation, such as "abscisic acid-induced protein" and "cold-regulated protein". The degradation of storage proteins mainly happened at the late stage of germination phase II (48 h imbibition), while that of seed maturation and desiccation associated proteins occurred at the early stage of phase II (24 h imbibition). In addition to alpha-amylase, the up-regulated proteins were mainly those involved in glycolysis such as UDP-glucose dehydrogenase, fructokinase, phosphoglucomutase, and pyruvate decarboxylase. The results reflected the possible biochemical and physiological processes of germination of rice seeds.  相似文献   

17.
18.
19.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.  相似文献   

20.
The disorders of hemostasis and coagulation were believed to be the main contributors to the pathogenesis of pulmonary thromboembolism (PTE), and platelets are the basic factors regulating hemostasis and coagulation and play important roles in the process of thrombosis. This study investigated the proteome of human umbilical vein endothelial cells (HUVECs) with platelet endothelial aggregation receptor-1 (PEAR1) knockdown using the isobaric tags for relative and absolute quantitation (iTRAQ) method and analyzed the role of differential abundance proteins (DAPs) in the regulation of platelets aggregation. Our results showed that the conditioned media-culturing HUVECs with PEAR1 knockdown partially suppressed the adenosine diphosphate (ADP)-induced platelet aggregation. The proteomics analysis was performed by using the iTRAQ technique, and a total of 215 DAPs (124 protein was upregulated and 91 protein were downregulated) were identified. The Gene Ontology (GO) enrichment analysis showed that proteins related to platelet α granule, adenosine triphosphate metabolic process, and endocytosis were significantly enriched. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis also identified the significant enrichment of endocytosis-related pathways. The real-time polymerase chain reaction assay confirmed that the expression of P2Y12, mitochondrial carrier 2, NADH dehydrogenase (ubiquinone) iron-sulfur protein 3, and ubiquinol-cytochrome c reductase hinge protein are significantly downregulated in the HUVECs with PEAR1 knockdown. In conclusion, our in vitro results implicated that DAPs induced by PEAR1 knockdown might contribute to the platelet aggregation. Proteomic studies by employing GO enrichment and KEGG pathway analysis suggested that the potential effects of DAPs on platelet aggregation may be linked to the balance of ADP synthesis or degradation in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号