首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of silicon on the growth of maize plants cultivated in hydroponics in the presence of cadmium (5 μM) was investigated. Four different treatments were used: Control (C), Cadmium (Cd), Silicon (Si) and Cadmium plus Silicon (Cd + Si). The Si concentration was 35 mM. Thirteen-day-old plants were harvested. Growth parameters (length of primary seminal root, leaf area of first and second fully developed leaves, fresh and dry weight of below- and above-ground parts of the plants), and Cd concentration and total amount of Cd in the below- and above-ground parts were determined. In roots, the development of the endodermal barrier was observed by fluorescent staining with Fluorol yellow 088.Inhibitory effects of Cd on plant growth were observed. Silicon treatment in the absence of Cd had positive effects on most of observed growth parameters compared with the control. Moreover, Si in the Cd + Si treatment improved all growth parameters compared with the cadmium treatment. Silicon increased the cell-wall extensibility both in Si and Cd + Si treatments when compared with the control. Alleviation of the Cd-inhibitory effect on maize plants by Si was not due to exclusion of Cd from the plant; in contrast, Cd concentration in below- and above-ground plant parts and the total amount of Cd per plant were significantly higher in the Cd + Si plants than in the Cd treatment. The increased Cd content in Cd + Si plants was correlated with the development of the endodermis; during the second stage of endodermal development, suberin lamellae were formed at a greater distance from the root apex in the Cd + Si than in the Cd treatment. Silicon itself did not influence the development of suberin lamellae in the maize roots compared with the control.  相似文献   

2.
Silicon (Si) frequently accumulates in plants tissues, mainly in roots of dicotyledons, such as cowpea. By contrast, Cadmium (Cd) is a metal that is extremely toxic to plant metabolism. This research aims to investigate if the deposition of Si in root can reduce Cd contents and minimize its negative effects on leaves, measuring gas exchange, chlorophyll fluorescence, antioxidant metabolism, photosynthetic pigments and growth, which may explain the possible role of Si in the attenuation of Cd toxicity in cowpea. This study had a factorial design, with all factors completely randomized and two Cd concentrations (0 and 500 µM Cd, termed as – Cd and + Cd, respectively) and three Si concentrations (0, 1.25 and 2.50 mM Si). Si reduced Cd contents in the roots and in other plant organs, such as stems and leaves. The Si contents were highest in roots, followed by stems and leaves, which was explained by the passive absorption of Si. The application of Si promoted increase in both the macro- and micronutrient contents in all tissues, suggesting that Si mitigates the effect of Cd on nutrient uptake. Si attenuated Cd-mediated effects on light absorption of photosystem II (PSII), increasing the effective quantum yield of PSII photochemistry and the electron transport rate. Additionally, toxic effects induced by Cd on gas exchange were mitigated by the action of Si. Plants treated with Cd + Si showed increase in the activities of antioxidant enzymes and reductions in oxidant compounds; these modifications were promoted by Si via detoxification mechanisms. Increases in the photosynthetic pigments and growth of plants treated with Si and exposed to Cd stress were detected and were due to the reduced deterioration of cell membranes and maintenance of chloroplasts, which had positive repercussions on growth and development. This study validated the hypothesis that the accumulation of Si in roots induces benefits on metabolism and alleviates the toxic effects caused by Cd in leaves of cowpea.  相似文献   

3.
Silicon uptake and accumulation in higher plants   总被引:34,自引:0,他引:34  
Silicon (Si) accumulation differs greatly between plant species because of differences in Si uptake by the roots. Recently, a gene encoding a Si uptake transporter in rice, a typical Si-accumulating plant, was isolated. The beneficial effects of Si are mainly associated with its high deposition in plant tissues, enhancing their strength and rigidity. However, Si might play an active role in enhancing host resistance to plant diseases by stimulating defense reaction mechanisms. Because many plants are not able to accumulate Si at high enough levels to be beneficial, genetically manipulating the Si uptake capacity of the root might help plants to accumulate more Si and, hence, improve their ability to overcome biotic and abiotic stresses.  相似文献   

4.
A long-term experiment was conducted to investigate the alleviative effects of silicon (Si) on cadmium (Cd) toxicity in garlic plants grown in pots. Cd and Si were introduced into soil before sowing. Cd was added at a rate of 20 mg kg?1 soil, and Si was applied at two rates: 50 mg SiO2 kg?1 (Si1) and 500 mg SiO2 kg?1 (Si2). There were totally six treatments consisting of CT (control, no added Cd or Si), Si1, Si2, Cd, Cd + Si1, and Cd + Si2. The results showed that Si addition did not affect the growth of garlic plants under control conditions. Under Cd stress, the plant growth and PSII quantum efficiency were inhibited, and they were significantly improved in the presence of added Si. Added Si at Si1 level did not change the soil pH and Cd availability, while it increased Cd accumulation in both shoot and bulb, and improved Cd tolerance. Si added at Si2 level increased the soil pH and decreased Cd availability, and decreased Cd accumulation in different parts of the plant. Added Si had no effect on the activities of soil catalase, urease or invertase regardless of Cd presence. The results suggest that Si could increase Cd tolerance of garlic plants, and the tolerance increase was attributed to not only decreased Cd availability but also in planta detoxification mechanism. There is no evidence indicating that Si-mediated increase of Cd tolerance is related to improved soil microorganism environment as observed in biotic stress conditions.  相似文献   

5.
Silicon is known to improve resistance against salinity stress in maize crop. This study was conducted to evaluate the influence of silicon application on growth and salt resistance in maize. Seeds of two maize genotypes (salt-sensitive ‘EV 1089’ and salt-tolerant ‘Syngenta 8441’) were grown in pots containing 0 and 2 mM Si with and without 50 mM NaCl. After detailed investigation of ion concentrations in different maize organs, both genotypes were further selected in hydroponic experiment on basis of their contrasting response to salinity stress. In the second experiment, pre-germinated seedlings were transplanted into nutrient solution with 0 and 60 mM NaCl with and without 2 mM Si. Both genotypes differed significantly in their response to salinity. Silicon addition alleviated both osmotic and oxidative stress in maize crop by improving the performance of defensive machinery under salinity stress. Silicon application also improved the water-use efficiency in both tested genotypes under both normal and salinity stress conditions. In conclusion, this study implies that the silicon-treated maize plants had better chance to survive under salinity conditions and their photosynthetic and biochemical apparatus was working far better than that of silicon-non-treated plants.  相似文献   

6.
7.
Al stress and ammonium–nitrogen nutrition often coexist in acidic soils due to their low pH and weak nitrification ability. Rice is the most Al-resistant species among small grain cereal crops and prefers NH4 + as its major inorganic nitrogen source. This study investigates the effects of NH4 + and NO3 ? on Al toxicity and Al accumulation in rice, and thereby associates rice Al resistance with its NH4 + preference. Two rice subspecies, indica cv. Yangdao6 and japonica cv. Wuyunjing7, were used in this study. After treatment with or without Al under conditions of varying NH4 + and NO3 ? supply, rice seedlings were harvested for the determination of root elongation, callose content, biomass, Al concentration and medium pH. The results indicated that Wuyunjing7 was more Al-resistant and NH4 +-preferring than Yangdao6. NH4 + alleviated Al toxicity in two cultivars compared with NO3 ?. Both NH4 +-Al supply and pretreatment with NH4 + reduced Al accumulation in roots and root tips compared with NO3 ?. NH4 + decreased but NO3 ? increased the medium pH, and root tips accumulated more Al with a pH increase from 3.5 to 5.5. Increasing the NO3 ? concentration enhanced Al accumulation in root tips but increasing the NH4 + concentration had the opposite effect. These results show NH4 + alleviates Al toxicity for rice and reduces Al accumulation in roots compared with NO3 ?, possibly through medium pH changes and ionic competitive effects. Making use of the protective effect of NH4 +, in which the Al resistance increases, is advised for acidic soils, and the hypothesis that rice Al resistance is associated with the preferred utilization of NH4 + is suggested.  相似文献   

8.
9.
Water relations, mineral composition, growth and root morphology were studied in pepper plants (Capsicum annuum L. cv California Wonder). Two NaCl concentrations (30 and 60 mM) and two nutrient solutions in which the concentrations of macronutrients were increased were used to assess the ionic and osmotic effects of NaCl in these plants. The hydraulic conductivity (Lo), stomatal conductance (gs), percentage of open stomata and pressure potential (Ψp) decreased with all treatments, in a similar way for 30 mM NaCl and for its iso-osmotic solution of macronutrients, however, the decrease was higher for 60 mM NaCl than for its iso-osmotic solution. Ion analyses also revealed that nutrient concentrations were altered greatly at 60 mM NaCl. Also, changes in morphology, such as increases in cortex cell size and in intercellular spaces, were detected. Therefore, at low salinity, the effect of NaCl was mainly osmotic, however, under higher salinity also the toxicity of Na+ and Cl participate.  相似文献   

10.
Brassinosteroids mitigate cadmium toxicity in cowpea plants   总被引:1,自引:0,他引:1  
Anthropogenic activities and improper uses of phosphate fertilizers have led to an increase in cadmium concentrations in agricultural soils. Brassinosteroids are steroid hormones that are rapidly assimilated and metabolised with beneficial roles in physiological and biochemical processes in plants. Our aim was to ascertain whether exogenous treatment with 24-epibrassinolide (EBR) can mitigate the Cd toxicity, and whether this substance can reduce the Cd accumulation in plant tissues. Furthermore, the dose response to EBR was determined following exposure to Cd in Vigna unguiculata. The experiment was a completely randomised factorial design with two concentrations of Cd (0 and 500 μM) and three concentrations of EBR (0, 50, and 100 nM). Spraying plants exposed to Cd with EBR significantly reduced the concentrations of Cd and increased nutrient contents in all tissues. The EBR treatment caused significant enhancements in leaf, root, and total dry matter. Foliar application of EBR reduced the negative effects of Cd toxicity on chlorophyll fluorescence and gas exchange parameters. Pretreatment with EBR also increased contents of pigments in plants exposed to Cd, compared with the identical treatments without EBR. Cd elevated contents of oxidant compounds, inducing cell damages, while EBR significantly decreased the concentrations of these compounds. We confirmed that EBR mitigated the negative effects related to Cd toxicity, reduced the absorption and transport of Cd, and increased the contents of essential elements. In plants exposed to Cd, the most apparent dose response was found for 100 nM EBR, with beneficial repercussions on growth, gas exchange, primary photosynthetic processes, and photosynthetic pigments, which were intrinsically connected to lower production of oxidant compounds and cell damage.  相似文献   

11.
This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu‐stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma‐aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal‐affected plants. Co‐treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes.  相似文献   

12.
Physiological role of nickel and its toxic effects on higher plants   总被引:9,自引:0,他引:9  
The focus of the review is on the specific aspects of nickel effect on plants as compared to other heavy metals; their specificity is derived from different physical and chemical properties. The various facets of the physiological role of nickel and its toxic activity in higher plants, its intracellular partition and transport in plant tissues and organ are discussed. The putative mechanisms of nickel hyperaccumulation are considered in several representatives of angiosperm plant families. The existing evidence was used to outline the metabolic changes in plants affected by nickel. The comparison with other heavy metals is used to disclose the general mechanisms that disturb plant mineral nutrition, water regime, photosynthesis, and morphogenesis as well as the common cell responses aimed at detoxification of heavy metals. The numerous nonspecific effects of heavy metals depend on their direct and indirect action; in addition, some effects of nickel are specific. To illustrate, high Ni content in endoderm and pericycle cells blocks cell divisions in the pericycle and results in the inhibition of root branching.  相似文献   

13.
14.
Benslima  Wided  Zorrig  Walid  Bagues  Mohamed  Abdelly  Chedly  Hafsi  Chokri 《Plant and Soil》2022,470(1-2):153-165
Plant and Soil - Phytohormones are a group of signal compounds that regulate plant growth, development, health and plant-soil interactions. We aimed to investigate the distribution and controlling...  相似文献   

15.
16.
Nitric oxide (NO) is a bioactive molecule involved in many biological events, and has been reported as pro-oxidant as well as anti-oxidant in plants. In the present study, the sources of NO production under water stress, the role of NO in water stress-induced hydrogen peroxide (H2O2) accumulation and subcellular activities of anti-oxidant enzymes in leaves of maize (Zea mays L.) plants were investigated. Water stress induced defense increases in the generation of NO in maize mesphyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. Water stress-induced defense increases in the production of NO were blocked by pretreatments with inhibitors of NOS and nitrate reductase (NR), suggesting that NO is produced from NOS and NR in leaves of maize plants exposed to water stress. Water stress also induced increases in the activities of the chloroplastic and cytosolic anti-oxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and the increases in the activities of anti-oxidant enzymes were reduced by pretreatments with inhibitors of NOS and NR. Exogenous NO increases the activities of water stress-induced subcellular anti-oxidant enzymes, which decreases accumulation of H2O2. Our results suggest that NOS and NR are involved in water stress-induced NO production and NOS is the major source of NO. The potential ability of NO to scavenge H2O2 is, at least in part, due to the induction of a subcellular anti-oxidant defense.  相似文献   

17.
Heat stress pretreatment of the heart is known to protect this organ against an ischemic/reperfusion insult 24 h later. Degradation of membrane phospholipids resulting in tissue accumulation of polyunsaturated fatty acids, such as arachidonic acid, is thought to play an important role in the multifactorial process of ischemia/reperfusion-induced damage.The present study was conducted to test the hypothesis that heat stress mitigates the postischemic accumulation of arachidonic acid in myocardial tissue, as a sign of enhanced membrane phospholipid degradation. The experiments were performed on hearts isolated from rats either 24 h after total body heat treatment (42°C for 15 min) or 24 h after sham treatment (control). Hearts were made ischemic for 45 min and reperfused for another 45 min.Heat pretreatment resulted in a significant improvement of postischemic hemodynamic performance of the isolated rat hearts. The release of creatine kinase was reduced from 30 ± 14 (control group) to 17 ± 5 units/g wet wt per 45 min (heat-pretreated group) (p < 0.05). Moreover, the tissue content of the inducible heat stress protein HSP70 was found to be increased 3-fold 24 h after heat treatment. Preischemic tissue levels of arachidonic acid did not differ between heat-pretreated and control hearts. The postischemic ventricular content of arachidonic acid was found to be significantly reduced in heat-pretreated hearts compared to sham-treated controls (6.6 ± 3.3. vs. 17.8 ± 12.0 nmol/g wet wt). The findings suggest that mitigation of membrane phospholipid degradation is a potential mechanism of heat stress-mediated protection against the deleterious effects of ischemia and reperfusion on cardiac cells.  相似文献   

18.
Arsenate (AsV) and arsenite (AsIII) contamination can promote several disturbances in plant metabolism, besides affecting directly human and animal health due to the insertion of this metalloid in the food chain. Therefore, the arsenic (As) uptake and accumulation, the changes in gas exchange and in chlorophyll a fluorescence parameters as well as the chloroplastic pigments content were measured. The As accumulation in leaves and roots increased with the increase of AsV and AsIII concentration, except at the highest AsIII concentration, probably because of AsIII extrusion mechanism. Although the highest As concentration has been found in roots, significant amount was transported to the leaves, especially when plants were exposed to AsIII. The As accumulation decreased the relative growth rate (RGR) of leaves and roots. However, at 6.6 μmol L?1 AsV, an increase in leaves RGR was observed, possibly related to the changes in phosphate (PV) nutrition caused by As. AsV and AsIII interfered negatively in the photosynthetic process, except at 6.6 μmol L?1 AsV. The observed reduction seemed to be associated to the interference in the photochemical and biochemical steps of photosynthesis; however, chlorophyll a fluorescence results indicate that the photosynthetic apparatus and chloroplastic pigments were not damaged. So, lettuce plants demonstrated to be able to accumulate As and also to protect the photosynthetic apparatus against the harmful effects of this metalloid, probably through the activation of tolerance mechanisms.  相似文献   

19.

Background and aims

Rice (Oryza sativa) is a main source of human exposure to inorganic arsenic and mitigation measures are needed to decrease As accumulation in this staple crop. It has been shown that silicon decreases the accumulation of arsenite but, unexpectedly, increases the accumulation of dimethylarsinic acid (DMA) in rice grain. The aim of this study was to investigate why Si increases DMA accumulation.

Methods

Pot and incubation experiments were conducted to investigate how the addition of sparingly soluble silicate gel affected As speciation in the soil solution and the accumulation of different As species in rice tissues.

Results

Silicon addition significantly decreased the concentration of inorganic As (mainly arsenite) but increased the concentration of DMA in both the vegetative and reproductive tissues of rice. Silicon increased the concentration of DMA in the soil solution, whereas autoclaving soil decreased DMA concentration. Less DMA was adsorbed by the soil than arsenate and Si addition significantly inhibited DMA adsorption.

Conclusions

Silicon increased DMA accumulation and decreased arsenite accumulation in rice through different mechanisms. Silicic acid released from the silicate gel increased the availability of DMA for rice uptake by inhibiting DMA adsorption on the soil solid phase or by displacing adsorbed DMA. Although silicic acid also increased the concentration of inorganic As in the soil solution, this effect was much smaller than the inhibitory effect of Si on arsenite uptake by rice roots.  相似文献   

20.
In 1991, treatment with low dose intramuscular desferrioxamine (DFO), a trivalent chelator that can remove excessive iron and/or aluminum from the body, was reported to slow the progression of Alzheimer's disease (AD) by a factor of two. Twenty years later this promising trial has not been followed up and why this treatment worked still is not clear. In this critical interdisciplinary review, we provide an overview of the complexities of AD and involvement of metal ions, and revisit the neglected DFO trial. We discuss research done by us and others that is helping to explain involvement of metal ion catalyzed production of reactive oxygen species in the pathogenesis of AD, and emerging strategies for inhibition of metal-ion toxicity. Highlighted are insights to be considered in the quests to prevent potentially toxic effects of aluminum toxicity and prevention and intervention in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号