首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of interleukin-3 (IL-3) on colony formation by hemopoietic progenitors in methylcellulose cultures of spleen cells from 5-fluorouracil (FU)-treated mice. Purified IL-3 supported the growth of various types of multilineage colonies including blast cell colonies. The types of colonies were similar to those supported by pokeweed-mitogen spleen cell conditioned medium (PWM-SCM), except that IL-3 supported eosinophil and neutrophil expression better. Delayed addition of IL-3 to cultures 7 days after cell plating decreased the number of colonies to one-half the number in cultures with IL-3 added on day 0. It did not alter the proliferative and differentiation characteristics of late emerging multipotential blast cell colonies. These observations suggest that IL-3 does not trigger hemopoietic progenitors into active cell proliferation but is necessary for their continued proliferation. This permissive role of IL-3 is consistent with a stochastic model of stem cell proliferation which features random entry into cell cycle. IL-3 also supported the growth of multilineage colonies from single cells isolated from blast cell colonies by micromanipulation. This result shows that IL-3 acts directly on multipotential progenitors. Analysis of colonies derived from paired progenitors revealed disparate lineage expression and was in accordance with the stochastic model of stem cell differentiation.  相似文献   

2.
Stochastic branching model for hemopoietic progenitor cell differentiation   总被引:1,自引:0,他引:1  
We present algebraic expressions describing the predictions of a stochastic branching model for differentiation of hemopoietic progenitor cells. The model assumes that there is a fixed probability, p (0 less than or equal to p less than or equal to 1), that commitment to a differentiative event occurs per progenitor cell division for each daughter cell. The model describes properties of in vitro hemopoietic cell differentiation including the population structure at the time the first progenitor cell becomes committed, the number of committed progenitor cells engendered by a single progenitor cell, and the probability of eventual commitment of all daughter cells derived from a single progenitor or stem cell. Application of the model to experimental data obtained from erythroid cultures suggests that the observed data can be explained by the stochastic branching model alone without making the deterministic assumption that there is a differentiative hierarchy in the lineage of the progenitors of erythropoiesis (BFU-E). The qualitative and quantitative aspects of the proposed stochastic model are discussed in conjunction with other analogous stochastic branching models.  相似文献   

3.
Pluripotent hemopoietic progenitors lose potentialities during the process of differentiation. We have examined events that lead to lineage restriction by determining the cellular composition of 785 multilineage colonies grown from peripheral blood samples of glucose-6-phosphate-dehydrogenase (G-6-PD) heterozygous volunteers. Of these colonies, 762 contained only one isoenzyme type and were considered to be of clonal origin. A considerable heterogenity was observed. Some colonies were composed of cells belonging to two different lineages, while other colonies contained three or more different cell types. A small number of colonies consisted—in addition to myeloid cells—of T-lymphocytes. The variable association within individual colonies of members belonging to different hemopoietic lineages suggests a flexible determination and expression of differentiation programs by early progenitors.  相似文献   

4.
《The Journal of cell biology》1994,127(6):1743-1754
Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c- MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU- GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.  相似文献   

5.
Several investigators have described hemopoietic colonies expressing multilineage differentiation in culture. We recently identified a class of murine hemopoletic progenitors which form blast cell colonies with very high replating efficiencies. In order to clarify further the relationship between progenitors for blast cell colonies and progenitors for the multilineage hemopoietic colonies in culture, we carried out analyses of kinetic and differentiation properties of murine blast cell colonies. Serial observations of the development of blast cell colonies into multilineage (and single lineage) colonies in cultures of spleen cells obtained from 5-fluorouracil (5-FU)-treated mice confirmed the transitional nature of the murine blast cell colonies. The data also suggested that the early pluripotent progenitors are in G0 for variable periods, and that when triggered into cell cycle, they proliferate at relatively constant doubling rates during the early stages of differentiation. The notion that some of the pluripotent progenitors are in G0 was also supported by long-term thymidine suicide studies in which spleen cells were exposed to 3H-thymidine with high specific activity for 5 days in culture, washed, and assayed for surviving progenitors. Comparison of replating abilities of day-7 and day-16 blast cell colonies from normal as well as 5-FU-treated mice indicated that some of the day-7 blast cell colonies are derived from maturer populations of progenitors which are sensitive to 5-FU. In contrast, progenitors for the day-16 blast cell colonies are dormant in cell cycle and were not affected by 5-FU treatment. Previously we reported that progenitors for day-16 blast cell colonies have a significant capacity for self-renewal. These observations suggest the hypothesis that the capability for self-renewal is accompanied by long periods of G0, and that once commitment to differentiation takes place, then active cell division occurs.  相似文献   

6.
Previous studies indicated that multipotent progenitors exist in early fetuses that do not contain long-term reconstituting (LTR) activity. However, it remained unclear whether these multipotent progenitors are committed to the hemopoietic lineage or are immature mesodermal cells or hemangioblasts. In this study, we have succeeded in enriching the multipotent progenitors that are capable of generating myeloid, T, and B cells in the LFA-1(-) subpopulation of TER-119(-)c-kit(+)CD45(+) cells from the aorta-gonad-mesonephros (AGM) region of day 10 fetuses. We found that these day 10 AGM LFA-1(-) cells do not show the LTR activity, whereas day 11 AGM LFA-1(-) cells do have such an activity. These results strongly suggest that multipotent progenitors lacking LTR activity emerge as CD45(+) hemopoietic progenitor cells in the AGM region on the 10th day of gestation, and such p-Multi mature into hemopoietic stem cells by acquiring LTR activity.  相似文献   

7.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) mainly stimulates proliferation and maturation of myeloid progenitor cells. Although the signal transduction pathways triggered by GM-CSF receptor (GMR) have been extensively characterized, the roles of GMR signals in differentiation have remained to be elucidated. To examine the relationship between receptor expression and differentiation of hemopoietic cells, we used transgenic mice (Tg-mice) that constitutively express human (h) GMR at almost all stages of hemopoietic cell development. Proliferation and differentiation of hemopoietic progenitors in bone marrow cells from these Tg-mice were analyzed by methylcellulose colony formation assay. High affinity GMR interacts with GM-CSF in a species-specific manner, therefore one can analyze the effects of hGMR signals on differentiation of mouse hemopoietic progenitors using hGM-CSF. Although mouse (m) GM-CSF yielded only GM colonies, hGM-CSF supported various types of colonies including GM, eosinophil, mast cell, erythrocyte, megakaryocyte, blast cell, and mixed hemopoietic colonies. Thus, the effects of hGM-CSF on colony formation more closely resembled mIL-3 than those of mGM-CSF. In addition, hGM-CSF generated a much larger number of blast cell colonies and mixed cell colonies than did mIL-3. hGM-CSF also generated erythrocyte colonies in the absence of erythropoietin. Therefore, GM-CSF apparently has the capacity to promote growth of cells of almost all hemopoietic cell lineages, if functional hGMR is present.  相似文献   

8.
9.
10.
Interleukin-4 (IL-4), which was originally identified as a B-cell growth factor, has been shown to produce diverse effects on hemopoietic progenitors. The present study investigated the effects of purified recombinant murine IL-4 on early hemopoetic progenitors in methylcellulose culture. IL-4 supported the formation of blast cell colonies and small granulocyte/macrophage (GM) colonies in cultures of marrow and spleen cells of normal mice as well as spleen cells of mice treated with 150 mg/kg 5-fluorouracil (5-FU) 4 days earlier. When the blast cell colonies were individually picked and replated in cultures containing WEHI-3 conditioned medium and erythropoietin (Ep), a variety of colonies were seen, including mixed erythroid colonies, indicating the multipotent nature of the blast cell colonies supported by IL-4. To test whether or not IL-4 affects multipotent progenitors directly, we replated pooled blast cells in cultures under varying conditions. In the presence of Ep, both IL-3 and IL-4 supported a similar number of granulocyte/erythrocyte/macrophage/megakaryocyte (GEMM) colonies. However, the number of GM colonies supported by IL-4 was significantly smaller than that supported by IL-3. When colony-supporting abilities of IL-4 and IL-3 were compared using day-4 post-5-FU spleen and day-2 post-5-FU marrow cells, IL-4 supported the formation of fewer blast cell colonies than did IL-3. IL-4 and IL-6 revealed synergy in support of colony formation from day 2 post-5-FU marrow cells. These results indicate that murine IL-4 is another direct-acting multilineage colony-stimulating factor (multi-CSF), similar to IL-3, that acts on primitive hemopoietic progenitors.  相似文献   

11.
A multipotent progenitor domain guides pancreatic organogenesis   总被引:3,自引:0,他引:3  
  相似文献   

12.
13.
14.
We have previously shown that the common progenitors for myeloid, T, and B cell lineages are enriched in the earliest population of murine fetal liver. However, it remained unclear whether such multipotent progenitors represent the pluripotent progenitors capable of generating all hemopoietic cells or they also comprise progenitors restricted to myeloid, T, and B cell lineages. To address this issue, we have developed a new clonal assay covering myeloid, erythroid, T, and B cell lineages, and using this assay the developmental potential of individual cells in subpopulations of lineage marker-negative (Lin(-)) c-kit(+) murine fetal liver cells was investigated. We identified the progenitor generating myeloid, T, and B cells, but not erythroid cells in the Sca-1(high) subpopulation of Lin(-)c-kit(+) cells that can thus be designated as the common myelolymphoid progenitor (CMLP). Common myeloerythroid progenitors were also detected. These findings strongly suggest that the first branching point in fetal hemopoiesis is between the CMLP and common myeloerythroid progenitors. T and B cell progenitors may be derived from the CMLP through the previously identified myeloid/T and myeloid/B bipotent stages, respectively.  相似文献   

15.
16.
17.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

18.
We recently identified a murine hemopoietic stem cell colony which consists of undifferentiated (blast) cells and appears to be more primitive than CFU-GEMM in the stem cell hierarchy. The progenitors for the colony which we termed “stem cell colony” possess an extensive self-renewal capacity and the ability to generate many secondary multipotential hemopoietic colonies in culture. We replated a total of 68 stem cell colonies from cultures of murine spleen cells and analyzed the number of stem cell–and granulocyte(neutrophil)-erythrocyte-macrophage-megakaryocyte (GEMM) colony-forming cells in individual stem cell colonies. Of the 68 stem cell colonies, 35 contained progenitors (abbreviated as “S”-cells) for stem cell colonies. The distributions of S-cells and CFU-GEMM in individual stem cell colonies were extremely heterogeneous. Neither the frequency distributions of S-cells nor CFU-GEMM in stem cell colonies could be fitted well by Poisson distribution. Rather, the frequency distribution of the s-cells could be approximated by a geometric distribution and that of CFU-GEMM by an exponential distribution, both of which are variates of the gamma distribution. Our observations are in agreement with those on the distributions of CFU-S in individual spleen colonies and provided support for a stochastic model for stem cell self-renewal and commitment in culture. Application of the theory of the branching process to the distribution of S-cells revealed a distributional parameter “p” of 0.589 which is also in agreement with the earlier report on the p value for reproduction of CFU-S.  相似文献   

19.
By studying the response of a well-defined progenitor cell to two well-defined mitogens, we have been able to provide a dramatic example of the complex relationship which can exist between the control of cell division and the control of differentiation.In previous studies we have described the development of the oligodendrocyte-type-2 astrocyte (O-2A) progenitor cell, a glial progenitor cell isolated from the rat optic nerve. Although originally described as a bipotential cell, we have recently identified a new differentiation pathway in this lineage. We have found that O-2Aperinatal progenitors, with properties appropriate for early development, give rise to O-2Aadult progenitors, which have stem cell-like properties more appropriate to the physiological needs of adult animals. Our studies thus indicate that the population of O-2Aperinatal progenitors is tripotential, and also suggests a possible developmental origin for self-renewing stem cells. Moreover, the properties of O-2Aadult progenitor cells may provide a cellular biological basis for understanding the failure of remyelination in multiple sclerosis.The division of both O-2Aperinatal and O-2Aadult progenitors is stimulated by type-1 astrocytes (which are themselves derived from a separate glial lineage) but this cell-cell interaction promotes different programs of differentiation in the two progenitor populations. The effects of type-1 astrocytes on perinatal and adult progenitors appears to be mediated by platelet-derived growth factor (PDGF), and this mitogen will also induce different programs of differentiation in the two progenitor populations. Moreover, the patterns of differentiation promoted by PDGF are different from those promoted by fibroblast growth factor (FGF), demonstrating that the modulation of division can be distinguished from the modulation of differentiation.  相似文献   

20.
Morphologic analysis of hemopoietic tissue in mouse liver reveals the persistence of erythropoietic, granulopoietic, and lymphopoietic activity for approximately 2 wk after birth. Near the end of the first postnatal week, we noted a remarkable reorganization of the hemopoietic cells that was characterized by a transition from a diffuse distribution of mixed erythroid, myeloid, and lymphoid elements to a focal pattern of discrete hemopoietic colonies scattered among the cords of hepatic parenchymal cells. Each hemopoietic focus contained cells progressing along a single differentiation pathway (i.e., erythroid, myeloid, or lymphoid cells). Megakaryocytes were seen as solitary cells surrounded by hepatocytes. This pattern of colonization was observed in all strains of mice examined. In the livers of mice with known hemopoietic defects, however, differences were found in the duration of postnatal hemopoiesis. Accessory cells with macrophage-like features were consistently observed in erythropoietic foci, but were rarely seen in lymphoid foci. The latter were formed by pre-B cells identifiable by the presence of cytoplasmic mu-heavy chains and the absence of light chain expression. The occurrence of discrete colonies of erythroid, myeloid, and pre-B lymphoid cells in the postnatal liver suggests that each is derived from a single, committed precursor cell. This anatomical compartmentalization according to cell type offers a useful model system for analysis of hemopoietic differentiation and of the generation of clonal diversity among B lineage cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号