首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mineralization of the herbicide linuron at concentrations of μg and mg L−1 was studied in liquid batch experiments with Variovorax sp. strain SRS16. The strain was highly efficient at mineralizing a range of linuron concentrations (0.002–10 mg L−1) with 20–60% of the added 14C-ring-labeled linuron metabolized to 14CO2 within hours to days depending on the initial linuron concentration and incubation period. At mg L−1 linuron concentrations the mineralization activity by SRS16 was inducible and a shift to constitutive mineralization activity was apparent with a reduction in the linuron concentration to μg L−1 levels. This study revealed that strain SRS16 is a promising candidate for bioaugmentation of water or soil resources contaminated with low linuron concentrations.  相似文献   

2.
A group of 34 chromium-resistant bacteria were isolated from naturally occurring chromium percolated serpentine soil of Andaman (India). These isolates displayed different degrees of chromate reduction under aerobic conditions. One of the 34 isolates identified as Bacillus sphaericus was tolerant to 800 mg l−1 Cr(VI) and reduced >80% Cr(VI) during growth. In Vogel Bonner broth, B. sphaericus cells (1010 cells ml−1) reduced 62% of 20 mg l−1 of Cr(VI) in 48 h with concomitant discoloring of yellow medium to white one. Reduction of chromate was pronounced by the addition of glucose and yeast extract as electron donors. In the presence of 4.0 g l−1 of glucose, 20 mg l−1 of Cr(VI) was reduced to 2.45 mg l−1 after 96 h of incubation. Optimum pH and temperature for reduction were 6.0 and 25 °C, respectively. Increase in cell density and initial Cr(VI) concentration increased chromate reduction but was inhibited by metal ions like, Ni2+, Co2+, Cd2+ and Pb2+. Experiments with cell-free extracts indicated that the soluble fraction of the cell was responsible for aerobic reduction of Cr(VI) by this organism.  相似文献   

3.
The growing resistance against antibiotics demands the search for alternative treatment strategies. Photodynamic therapy is a promising candidate. The natural intermediate of chlorophyll biosynthesis, protochlorophyllide, was produced, purified and tested as a novel photosensitizer for the inactivation of five model organisms including Staphylococcus aureus, Listeria monocytogenes and Yersinia pseudotuberculosis , all responsible for serious clinical infections. When microorganisms were exposed to white light from a tungsten filament lamp (0.1 mW cm−2), Gram-positive S. aureus, L. monocytogenes and Bacillus subtilis were photochemically inactivated at concentrations of 0.5 mg L−1 protochlorophyllide. Transmission electron microscopy revealed a disordered septum formation during cell division and the partial loss of the cytoplasmic cell contents. Gram-negative Y. pseudotuberculosis and Escherichia coli were found to be insensitive to protochlorophyllide treatment due to the permeability barrier of the outer membrane. However, the two bacteria were rendered susceptible to eradication by protochlorophyllide (10 mg L−1) upon addition of polymyxin B nonapeptide at 50 and 20 mg L−1, respectively. The release of DNA and a detrimental rearrangement of the cytoplasm were observed.  相似文献   

4.
1. Although large cladocerans are usually uncommon in large rivers, Daphnia lumholtzi (an exotic species in North America) is widespread and occasionally abundant. We collected zooplankton on the Illinois River (Illinois, U.S.A.) in 1995 and 1996 and found that the peak density of D. lumholtzi (25 L−1) typically exceeded that of all native species combined. Maximum density occurred during warm periods (up to 27 °C) when concentrations of inorganic suspended sediments were high (>50 mg L−1).
2. Using a life table experiment, we examined the effects of variation in suspended sediment (0 and 80 mg L−1) and food (104 and 105 Ankistrodesmus cells mL−1) on fitness of D. lumholtzi and the native Daphnia parvula. Daphnia lumholtzi had greater survivorship than D. parvula in most treatments and higher life-time fertility than D. parvula in all treatments. Both species achieved their fastest intrinsic rates of growth in treatments with high food, but their responses to suspended solids differed. The growth rate of D. lumholtzi in high food was slightly increased by higher turbidity, whereas that of D. parvula was depressed.
3. Results suggest that the ability of D. lumholtzi to tolerate suspended solids is an important factor contributing to its success in invading North American rivers.  相似文献   

5.
Aims:  This study investigated the effects of phosphorus on biofilm formation via annular reactor systems in terms of biofilm cell growth, exopolysaccharide (EPS) production, biofilm structure and cell metabolic potential.
Methods and Results:  Drinking water biofilms were developed in annular reactors with supplement of carbon and different levels of phosphorus. The biofilm formation was monitored over a period of 30 days. Biofilm related parameters were examined by various methods, which included heterotrophic plate count, total carbohydrate content, confocal laser scanning microscopy and GN2 microplate assay. Our results showed that phosphorus addition can promote the biofilm cell growth (cell count increased about 1 log with addition of 30 and 300 μg l−1 of phosphorus). However, the addition of 30 and 300 μg l−1 of phosphorus caused 81% and 77% decrease in EPS production, respectively. The results of biofilm structure analysis showed that the addition of 30 and 300 μg l−1 of phosphorus can induce thicker and less homogeneous biofilms with more biomass. Furthermore, the addition of 30 and 300 μg l−1 of phosphorus dramatically increased the biofilm cell metabolic potential. The addition of 3 μg l−1 of phosphorus was found to have minor effects on the parameters examined.
Conclusions:  The results indicate phosphorus addition to drinking water distribution system (DWDS) has a complicated effect on the biofilm formation.
Significance and Impact of the Study:  As the addition of phosphorus at certain levels can affect the biofilm growth in DWDS, care should be taken when phosphate-based corrosion inhibitors are used in the DWDS.  相似文献   

6.
1. The effects of prolonged ultraviolet-B (UVB) radiation on freshwater communities were studied in indoor microcosms (600 L) with artificial light sources, simulating a clear, shallow, mesotrophic aquatic ecosystem. A range of six intensities (in duplicate) of UVB radiation, ranging from 0 (control) to 9.56 kJ m−2 day−1 at the water surface, was applied for 8 weeks. The UVB radiation levels, attenuation, shading and scattering were comparable to those in Dutch shallow freshwater systems. Physical, chemical and biological variables were monitored weekly.
2. The UVB treatment did not affect the abundance, species composition or biovolume of the phytoplankton or zooplankton communities, nor did it affect the periphyton or the macroinvertebrate community. A few species showed a significant response on some of the sampling dates, but there was no negative UVB effect at the community level. Overall, the ecosystems in the microcosms were not affected by the UVB treatment.
3. In a bio-assay, a laboratory clone of Daphnia pulex , not subjected to UVB radiation, was fed with seston from the microcosms. Daphnia pulex feeding on seston from the control microcosms grew faster, had better survival and better reproduction than D. pulex feeding on seston from the UVB treated microcosms. The phytoplankton–zooplankton interaction may have been influenced by the UVB treatment.
4. The dissolved oxygen content (DOC) concentrations in the microcosms were around 5 mg L−1. The DOC levels in Dutch systems rarely fall below 10 mg L−1. This might provide sufficient protection against the detrimental effects of increased UVB radiation.  相似文献   

7.
Scanning transmission X-ray microscopy (STXM) at the C 1s, O 1s, Ni 2p, Ca 2p, Mn 2p, Fe 2p, Mg 1s, Al 1s and Si 1s edges was used to study Ni sorption in a complex natural river biofilm. The 10-week grown river biofilm was exposed to 10 mg L−1 Ni2+ (as NiCl2) for 24 h. The region of the biofilm examined was dominated by filamentous structures, which were interpreted as the discarded sheaths of filamentous bacteria, as well as a sparse distribution of rod-shaped bacteria. The region also contained discrete particles with spectra similar to those of muscovite, SiO2 and CaCO3. The Ni(II) ions were selectively adsorbed by the sheaths of the filamentous bacteria. The sheaths were observed to be metal rich with significant amounts of Ca, Fe and Mn, along with the Ni. In addition, the sheaths had a large silicate content but little organic material. The metal content of the rod-shaped bacterial cells was much lower. The Fe on the sheath was mainly in the Fe(III) oxidation state. Mn was found in II, III and IV oxidation states. The Ni was likely sorbed to Mn–Fe minerals on the sheath. These STXM results have probed nano-scale biogeochemistry associated with bacterial species in a complex, natural biofilm community. They have implications for selective Ni contamination of the food chain and for developing bioremediation strategies.  相似文献   

8.
Stoichiometric constraints within ecological interactions and their ecosystem consequences may depend on characteristics of the abiotic environment such as background nutrient levels. We assessed whether consumer identity, via differing body stoichiometry, could regulate periphyton stoichiometry across nutrient regimes in open systems. In 60 flow-through artificial streams, we factorially crossed dissolved inorganic nitrogen levels (elevated = 294  μ g L−1, ambient = 26  μ g L−1) with dissolved inorganic phosphorus levels (DIP: elevated = 15  μ g L−1, ambient = 3  μ g L−1) and consumer type [crayfish (body N : P = 18), snails (body N : P = 28) or a control]. At ambient DIP, periphyton in the crayfish treatment had a lower %P and a lower C : P than periphyton in the snail treatment suggesting that consumer identity, probably mediated by differing P-excretion, regulated periphyton P content. At high DIP, consumer identity no longer affected periphyton elemental composition. Therefore, the stoichiometry of consumer-driven nutrient recycling and consumer identity may be less important to ecosystem functioning in environments with elevated nutrient levels.  相似文献   

9.
The biological control potential of Pochonia chlamydosporia against root-knot ( Meloidogyne spp.) and cyst-forming ( Heterodera and Globodera spp.) nematodes is widely appreciated. In spite of this, little has been undertaken to determine the compatibility of this fungus with modern fungicides. A series of experiments were undertaken to investigate the effect of azoxystrobin on P. chlamydosporia . Initial Petri dish experiments found a significant reduction in the growth of P. chlamydosporia . EC50 values were calculated at 7 and 14 mg L−1, respectively, for hyphal growth and chlamydospore germination. A microcosm experiment based on counts of the colony-forming units of the re-isolated fungus showed a reduction in EC50 values for azoxystrobin in soil after 12, 20 and 40 days incubation (1.25, 1.00 and 3.00 mg kg−1 soil, respectively). There was evidence the fungus recovered over time in response to azoxystrobin application. This was also demonstrated in a glasshouse experiment where EC50 values of 1.32 and 4.4 mg kg−1 soil were obtained for 35 and 49 days after planting (DAP), respectively.  相似文献   

10.
Biofilm formation and function was studied in mixed culture using 20 bacterial strains isolated from a karst aquifer. When co-cultured in a glucose-limited chemostat, Vogesella indigofera and Pseudomonas putida were the dominant planktonic and biofilm organisms respectively. Biofilm formation and resistance to the iodine disinfectant betadine were then studied with monoculture and binary cultures of V. indigofera and P. putida and a 20-strain community. Biofilm population size [measured as colony-forming units (CFU) cm−2] increased with increasing species diversity. Significantly larger populations formed at dilution rates (DRs) of 0.0083 h−1 than at 0.033 h−1. P. putida populations were higher and V. indigofera lower in binary than in monoculture biofilms, suggesting that P. putida outcompeted V. indigofera . In binary biofilms, V. indigofera , a betadine-resistant organism, enhanced the survival of P. putida , a betadine-susceptible organism. In the 20-strain biofilms, this protective effect was not observed because of low concentrations of V. indigofera (< 1% of the total population), suggesting that resistant organisms contribute to overall biofilm disinfectant resistance. Growth at 0.033 h−1 enhanced survival of V. indigofera biofilms against betadine. Although DR did influence survival of the other communities, its effects were neither consistent nor significant. All told, biofilm formation and betadine resistance are complex phenomena, influenced by community composition, growth rate and betadine concentration.  相似文献   

11.
A library of 20 000 transposon (Tn5) mutants of the gram-negative bacterium Pseudomonas putida CA-3 was generated and screened for adverse affects in polyhydroxyalkanoates (PHA) accumulation. Two mutants of interest were characterized phenotypically. CA-3-126, a mutant disrupted in a stress-related protein Clp protease subunit ClpA, demonstrated greater decreases in PHA accumulation compared with the wild type at reduced and elevated temperatures under PHA-accumulating growth conditions. CA-3-M, which is affected in the aminotransferase class I enzyme, accumulated reduced levels of PHA relative to the wild type and had lower growth yields on all carbon sources tested. Mutant CA-3-M produced up to 10-fold higher levels of lipopolysaccharide relative to the wild type and exhibited 1.2-fold lower aminotransferase activity with phenylalanine as a substrate compared with the wild-type strain. The composition of the lipopolysaccharide produced by the mutant differed from that produced by the wild-type strain. Growth and PHA accumulation by CA-3-M was the same as the wild type when the nitrogen concentration in the medium was increased to 265 mg N L−1.  相似文献   

12.
Nitric oxide (NO) is an endogenous signalling molecule implicated in a growing number of plant processes and has been recognised as a plant hormone. The present research employed spinach plant ( Spinacia oleracea cv. Huangjia) and closed growth chambers to investigate the effects of gaseous NO application on vegetable production in greenhouses. Treatment of low concentration of NO gas (ambient atmosphere with 200 nL L−1 NO gas) significantly increased the shoot biomass of the soil-cultivated plants as compared with the control treatment (ambient atmosphere). In addition, the NO treatment also increased the photosynthetic rate of leaves, indicating that the enhancement of photosynthesis is an important reason leading to more biomass accumulation induced by NO gas. Furthermore, the NO treatment decreased nitrate concentration but increased the concentrations of soluble sugar, protein, antioxidants (vitamin C, glutathione and flavonoids), and ferric reducing-antioxidant power (FRAP) in shoots of the plants grown in soil, suggesting that the gaseous NO treatment can not only increase vegetable production but also improve vegetable quality. In addition, the effects of the combined application of NO and CO2 (NO 200 nL L−1 and CO2 800 μL L−1) on shoot biomass was even greater than the effects of elevated CO2 (CO2 800 μL L−1) or the NO treatment alone, implying that gaseous NO treatment can be used in CO2-elevated greenhouses as an effective strategy in improving vegetable production.  相似文献   

13.
Routine oxygen consumption ( M o 2) was 35% higher in 1 day starved and 21% higher in 4 day starved adult transgenic coho salmon Oncorhynchus kisutch relative to end of migration ocean-ranched coho salmon. Critical swimming speed ( U crit) and M o 2 at U crit ( M o 2max) were significantly lower in 4 day starved transgenic coho salmon (1·25 BL s−1; 8·79 mg O2 kg−1 min−1) compared to ocean-ranched coho salmon (1·60 BL s−1; 9·87 mg O2 kg−1 min−1). Transgenic fish swam energetically less efficiently than ocean-ranched fish, as indicated by a poorer swimming economy at U crit ( M o 2max     ). Although M o 2max was lower in transgenic coho salmon, the excess post-exercise oxygen consumption (EPOC) measured during the first 20 min of recovery was significantly larger in transgenic coho salmon (44·1 mg O2 kg−1) compared with ocean-ranched coho salmon (34·2 mg O2 kg−1), which had a faster rate of recovery.  相似文献   

14.
SUMMARY 1. Two experiments were performed with periphytic diatoms originating from the River Lot (France) and allowed to grow on clean substrata within indoor artificial streams. Three cadmium (Cd) levels (control, low Cd=10 μg L−1 and high Cd=100 μg L−1) were used to test the effects of Cd on (i) the settlement and development of diatom communities (Experiment 1, 4 weeks Cd exposure) and (ii) predeveloped communities grown over a 2-week period without contamination (Experiment 2, 2 weeks Cd exposure).
2. Experiment 1 revealed that growth and taxonomic composition of diatom communities clearly differed with Cd exposure. Biofilms were more adpressed to substrata under low Cd concentration, and were thinner and patchy under high Cd concentration.
3. Exposure of developed diatom communities (Experiment 2) to Cd revealed only minor variations in taxonomic composition, possibly linked to the protective role of the developed organic matrix against metal stress.
4. These results support the validity of periphytic diatom communities as indicators of metal pollution, although significant structural changes would take longer within developed communities.  相似文献   

15.
1. Sediment and nutrient loading in freshwater systems are leading causes of aquatic habitat degradation globally. We investigated the impacts of fine-sediment and nutrient additions on the growth and survival of western toad ( Bufo boreas ) tadpoles and emergent metamorphs in mesocosm and exclosure experiments.
2. Mesocosm tanks received weekly pulses of fine sediments to create initial concentrations of 0, 130 and 260 mg L−1 of suspended sediment and either bi-weekly additions of nutrients (N = 160 μg L−1, P = 10 μg L−1) or no additions in a factorial design. Within mesocosms, tadpole exclosures allowed for quantification of tadpole grazing pressure on periphyton biomass, chlorophyll- a and sediment deposition.
3. Tadpoles receiving sediment additions experienced slower growth rates and reduced survival to metamorphosis, although no effects of treatment were detected on size at metamorphosis or time to metamorphosis. Nutrient additions also lowered survival, but had no impact on other measured parameters of tadpole fitness. Dissections and gut content analysis revealed that tadpoles ingested sediment in large quantities altering the proportion of the organic content of ingested food.
4. Together these results suggest that although sediment was readily consumed by tadpoles, its presence in the larval environment had an overall negative effect on tadpole growth and survival, although not as severe as predicted.  相似文献   

16.
1.  Daphnia magna , a well-studied primary consumer, is mainly known as a filter feeder. In this study, we investigated the ability of D. magna to use periphyton as an alternative food source to phytoplankton. We examined the development of laboratory populations fed with different food sources ( Desmodesmus subspicatus and/or periphyton or neither) over a period of 42 days, and observed the behaviour of the daphnids.
2.  The addition of periphyton to phytoplankton food led to an increase of daphnid population biomass. When fed with periphyton as the only food source, a small but stable D. magna population developed.
3.  The behaviour of daphnids fed with both food sources revealed a preference for feeding on D. subspicatus . Only below a concentration of D. subspicatus of approximately 0.05 mg C L−1 (0.4 × 107 cells L−1) did D. magna use periphyton as an alternative food source.
4.  Periphyton showed distinct reactions to grazing by D. magna . The thickness of the periphyton layer was reduced from about 4 to 1 mm and we observed a change in species composition due to grazing.
5.  The ability of D. magna to graze on periphyton could serve to stabilize its population density and reinforce its competitive advantage over other cladocerans. By switching between food sources, D. magna can act as a coupler between pelagic and benthic habitats and food webs.  相似文献   

17.
1. Whole-lake experiments were conducted in two hardwater lakes (Halfmoon and Figure Eight) in Alberta, Canada, to investigate the effectiveness of repeated lime (slaked lime: Ca(OH)2 and/or calcite: CaCO3) treatments (5–78 mg L–1) for up to 7 years.
2. Randomized intervention analysis of intersystem differences between the experimental and three reference lakes demonstrated a decline in euphotic total phosphorus and chlorophyll a concentrations in the experimental lakes after repeated lime treatments.
3. After the second lime application to Halfmoon Lake, mean winter total phosphorus release rates (TPRR) decreased to < 1 mg m–2 day–1 compared with 3.6 mg m–2 day–1 during the winter after initial treatment. In the final year of lime application, mean summer TPRR decreased to 4.5 mg m–2 day–1 compared with 7.6 mg m–2 day–1 in the pre-treatment year.
4. Mean macrophyte biomass declined and species composition was altered at 1 and 2 m depths in Figure Eight Lake during lime application. Over the first 6 years of treatment, macrophyte biomass at 2 m declined by 95% compared with concentrations recorded during the initial treatment year. In the last year of the study, macrophyte biomass at 2 m reached initial treatment concentrations, which coincided with the greatest water transparency. Over the treatment period, macrophyte species shifted from floating to rooted plants.
5. Multiple lime applications can improve water quality in eutrophic hardwater lakes for periods of up to 7 years.  相似文献   

18.
Concentrations of total mercury were determined in Hydrocynus vittatus (Castelnau), Sargochromis codringtonii (Boulenger), and Limnothrissa miodon (Boulenger) from two localities in Lake Kariba, Zimbabwe.
The mean concentrations of total mercury in H. vittatus from Basin 5 and Basin 2 were 0.08 mg kg−1 and 0.094 mg kg−1, respectively. In S. codringtonii, mean concentrations were 0.004 mg kg−1 and 0.026 mg kg−1 for Basins 5 and 2, respectively. No mercury was detected in L. miodon from Basin 2 while samples from Basin 5 had a mean concentration of 0.069 mg kg−1 (wet weight). Total mercury concentrations were also determined on a dry weight basis.
Within each sampling area, total mercury concentrations were significantly different among species ( P  < 0.05). For H. vittatus and S. codringtonii, total mercury concentrations (in the same species) were not significantly different between the two localities ( P  < 0.05).
The factors causing the observed differences in total mercury between similar species from different localities and among different species in the same locality (sampling area) are discussed. From the observed low levels of mercury in all three species, it was concluded that the mercury constituted 'background levels'. These levels are below the maximum concentrations permissible in human fish foods.  相似文献   

19.
SUMMARY 1. Unialgal cultures of three species common in the freshwater phytoplankton were used to test limitation of specific growth rate and final yield in defined media of low K+ concentration (range <0.3–6 μmol L−1 or mmol m−3).
2. Growth rate of the diatom Asterionella formosa was independent of K+ concentration above 0.7 μmol L−1. Final yield was dependent on initial concentration when accompanied by K+ depletion below this concentration, but not by lesser depletion with more residual K+. Analyses of particulate K in the biomass indicated a mean final cell content of 2.8 μmol K 10−8 cells, approximately 1.0% of the organic dry weight.
3. Less detailed work with the diatom Diatoma elongatum showed no dependence of growth rate or final yield upon the initial K+ concentration in the range 0.8–3.2 μmol L−1. The phytoflagellate Plagioselmis nannoplanctica suffered net mortality in the lowest concentration tested, 0.8 μmol L−1.
4. Comparison with the range of K+ concentration in natural fresh waters, including a depletion induced by an aquatic macrophyte, suggests that K+ is unlikely to limit growth of phytoplankton. Nevertheless, there can be correlation of K+ with lake trophy.  相似文献   

20.
Aim:  To test the Bacillus strains for their abilities to produce polyhydroxybutyrate (PHB) from different sugars and biowaste (Pea-shells).
Methods and Results:  Six Bacillus strains were checked for their ability to produce PHB from GM2 medium supplemented with different sugars at the rate of 1% (w/v) and from biowaste and GM2 (BW : M) combinations (3 : 7, 1 : 1, 7 : 3). Glucose supplemented GM2 medium resulted in maximum PHB production of 435 mg l−1 constituting 31–62% w/w of the total cell dry mass. Substituting GM2 medium to the extent of 50% with biowaste (pea-shell slurry) resulted in 945–1205 mg l−1 PHB (55–65% w/w). Optimization for additional nitrogen supplementation, inoculum size resulted in a final PHB production of 3010–3370 mg l−1 equivalent to 300 g kg−1 biowaste (dry wt).
Conclusion:  The Bacillus strains were able to produce PHB from biowaste (Pea-shells) as cheap source of substrate.
Significance and Impact of the Study:  This is the first report on usage of pea-shells as feed for PHB production, opening new possibilities for its use for production of PHB and Bacillus as potential candidate for the purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号