首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two active lysine transport systems were detected in Saccharomycopsis lipolytica. No excretion of lysine out of the cells could be obtained, even by chasing with L-lysine or by poisoning with sodium azide. The kinetic properties of one of the permeases, the high-affinity lysine permease, were studied in detail. Its Km was 1.91 +/- 0.23 X 10(-5) M. It proved highly specific, the only potent competitive inhibitors being (i) arginine and its analogs L-canavanine and L-ornithine, and (ii) the lysine analogs L-5 aminoethylcysteine and L-4,5-transdehydrolysine. It is suggested that the high-affinity lysine permease is common to L-lysine, L-ornithine, and L-arginine. The other amino acids tested behaved as noncompetitive inhibitors. The variation of uptake during a growth cycle was studied on ammonia-rich, ammonia-poor, and ammonia-free media. In each case, the uptake exhibited a peak in the early exponential growth phase. No new permease activity was detected during the lag phase or the stationary phase. Ammonia ions competitively inhibited the uptake and also decreased the Vmax value.  相似文献   

2.
Wild-type strains of Saccharomycopsis lipolytica are able to use lysine as a carbon or a nitrogen source, but not as a unique source for both. Mutants were selected that could not use lysine either as a nitrogen or as a carbon source. Some of them, however, utilized N-6-acetyllysine or 5-aminovaleric acid. Many of the mutants appeared to be blocked in both utilizations, suggesting a unique pathway for lysine degradation (either as a carbon or as a nitrogen source). Genetic characterization of these mutants was achieved by complementation and recombination tests.  相似文献   

3.
4.
The genetics of a strain of Saccharomycopsis lipolytica which accumulates citric acid have been studied. The results show that a mating system exists in the organism although no diploid was isolated.  相似文献   

5.
The mating reaction in Saccharomycopsis lipolytica is shown to be bipolar through the analysis of whole meiotic tetrads. Genetic evidence is provided that alkane metabolism proceeds through a fatty acid or a fatty acid intermediate since several mutants unable to grow on n-tetradecane were also unable to utilize palmitic acid.  相似文献   

6.
Heterologous complementation of yeast mutants has enabled the isolation of genes encoding several families of amino acid transporters. Among them, NTR1 codes for a membrane protein with weak histidine transport activity. However at the sequence level, NTR1 is related to rather non-specific oligopeptide transporters from a variety of species including Arabidopsis and to the Arabidopsis nitrate transporter CHL1. A yeast mutant deficient in oligopeptide transport was constructed allowing to show that NTR1 functions as a high affinity, low specificity peptide transporter. In siliques NTR1-expression is restricted to the embryo, implicating a role in the nourishment of the developing seed.  相似文献   

7.
Lysine supplementation of the growth medium of a wild type strain of the yeast Saccharomycopsis lipolytica specifically results in saccharopine dehydrogenase repression. Starvation of the strain for histidine triggers a general depression of various histidine, leucine, arginine and lysine biosynthetic enzymes, including saccharopine dehydrogenase. These two types of control, specific and general, act independently on saccharopine dehydrogenase expression, since mutants which fail to respond to the specific control still are sensitive to the general one. These mutants were first selected as unable to catabolize lysine, suggesting that a link may exist between saccharopine dehydrogenase specific regulation and activity of the catabolic pathway.  相似文献   

8.
9.
The mechanism of the massive extracellular production of citric and isocitric acids by Saccharomycopsis lipolytica grown on n-paraffins has been studied. When growth stops, because of nitrogen limitation, the intracellular concentration of ATP sharply rises whereas that of AMP and ADP decreases to a low level. At the same time production of acids begins. The activity of the NAD-dependent isocitrate dehydrogenase which requires AMP for activity becomes very low and prevents the oxidative function of the citric acid cycle whereas isocitrate lyase is not inhibited. As citrate synthase inhibition by ATP appears to be insufficient to stop n-paraffin degradation, citric and isocitric acids accumulation can take place. Massive excretion of these acids, however, probably still involves other physiological changes brought about by nitrogen limitation, possibly some permeabilization of the cell to these acids.This work is a part of a Doctorat de Spécialité Thesis submitted by R. Marchal to the University of Nancy (1975)  相似文献   

10.
The specific inhibitory effect of benzhydroxamic acid on the cyanide-insensitive respiration could be reversed in whole cells of the yeast Saccharomycopsis lipolytica, by addition of Fe(III), in a way suggesting a competition between the added iron and an enzyme-bound metallic ion, both central atoms for the ligand benzhydroxamic acid. The possibility that added metal ions modify the penetration of BHAM into the cells was ruled out. Co(II), Cu(II) and Al(III) could substitute for Fe(III). A linear relation between the concentration in added Fe(III) and the reversed respiration rate was observed. At a given cell concentration. the reversion by added Fe(III) of the inhibitory effect of benzhydroxamic acid on the alternative respiration appeared more related to the degree of inhibition rather than to the concentration in added inhibitor. Increasing cell concentrations required increasing amounts of Fe(III) to reach the same level of reversion. No reversal occurred at concentrations in added Fe(III) lower than 0.1 mM, whatever the benzhydroxamic concentration, the cell concentration or the yeast batch.  相似文献   

11.
Individual yeast colonies produce pulses of volatile ammonia separated by phases of medium acidification. Colonies of Saccharomyces cerevisiae mutant defective in the general amino acid permease, Gap1p, exhibit decreased ammonia production. Mutations in the S. cerevisiae amino acid sensor SPS completely abolish the colony ammonia pulses. In contrast, the ammonia pulse production is independent of external concentrations of ammonium and of its uptake by the ammonium permeases Mep1p, Mep2p, and Mep3p. It is concluded that in S. cerevisiae colonies, the extracellular amino acids, but not the extracellular ammonium, serve as a source for volatile ammonia production. These phenomena are not restricted to S. cerevisiae, since we observe that extracellular levels of 8 out of the 20 tested amino acids are necessary for ammonia pulses produced by Candida mogii colonies.  相似文献   

12.
An inherited amino acid transport deficiency results in low concentrations of glutathione (GSH) in the erythrocytes of certain sheep. Earlier studies based on phenotyping according to GSH concentrations indicated that the gene Tr H, which controls normal levels of GSH, behaves as if dominant or incompletely dominant to the allele Tr h, which controls the GSH deficiency. The present paper shows that when sheep are classified according to amino acid transport activity, the Tr H gene behaves as if codominant to Tr h. Erythrocytes from sheep homozygous for the Tr H gene exhibit rapid saturable l-alanine influx (apparent K m ,21.6mm; V max, 22.4 mmol/liter cells/hr). Cells from sheep homozygous for the Tr h gene exhibit slow nonsaturable l-alanine uptake (0.55 mmol/liter cells/hr at 50mm extracellular l-alanine). Cells from heterozygous sheep show saturable l-alanine uptake with a diminished V max (apparent K m, 19.1mm; V max, 12.7 mmol/liter cells/hr). These erythrocytes have a significantly lower GSH concentration than cells from Tr H, TrH sheep but similar intracellular levels of dibasic amino acids.The authors are grateful to the M.R.C. for a Project Grant.  相似文献   

13.
Abstract Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium . The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).  相似文献   

14.
Abstract

Membrane proteins are intrinsically involved in both human and pathogen physiology, and are the target of 60% of all marketed drugs. During the past decade, advances in the studies of membrane proteins using X-ray crystallography, electron microscopy and NMR-based techniques led to the elucidation of over 250 unique membrane protein crystal structures. The aim of the European Drug Initiative for Channels and Transporter (EDICT) project is to use the structures of clinically significant membrane proteins for the development of lead molecules. One of the approaches used to achieve this is a virtual high-throughput screening (vHTS) technique initially developed for soluble proteins. This paper describes application of this technique to the discovery of inhibitors of the leucine transporter (LeuT), a member of the neurotransmitter:sodium symporter (NSS) family.  相似文献   

15.
Yeast dimorphism is an attractive model for the study of cell morphogenesis and differentiation. The non-conventional yeast Yarrowia lipolytica was chosen to characterise the regulation of dimorphic transition by extracellular pH and by the presence of organic sources of nitrogen. Organic nitrogen sources appear to be required for the morphogenic effect of pH. Two sets of mutants defective in either pH-dependent or nitrogen source-dependent signalling pathway were analysed. The results suggest that the latter but not the former is required for both normal filament formation on solid medium and pH-dependent dimorphic behaviour of Y. lipolytica in liquid medium. We propose that in this organism pH affects the formation of hyphae indirectly by modulation of availability and/or utilisation of transportable sources of nitrogen.  相似文献   

16.
The strain Saccharomyces cerevisiae W303-1a, able to grow in a medium containing acetic acid as the sole carbon and energy source, was subjected to mutagenesis in order to obtain mutants deficient in monocarboxylate permeases. Two mutant clones exhibiting growth in ethanol, but unable to grow in a medium with acetic acid as the sole carbon and energy source, were isolated (mutants Ace12 and Ace8). In both mutants, the activity for the acetate carrier was strongly affected. The mutant Ace8 revealed not to be affected in the transport of lactate, while the mutant Ace12 did not display activity for that carrier. These results reinforced those previously found in the strain IGC 4072, where two distinct transport systems for monocarboxylates have been described, depending on the growth carbon source. It is tempting to postulate that the Ace8 mutant seems to be affected in the gene coding for an acetate permease. In contrast, the absence of activity for both monocarboxylate permeases in mutant Ace12 could be attributed to a mutation in a gene coding for a regulatory protein not detected before.  相似文献   

17.
Lipid particles (LP) of all types of cells are a depot of neutral lipids. The present investigation deals with the isolation of LP from the yeast Yarrowia lipolytica and the characterization of their lipid and protein composition. Properties of LP varied depending on the carbon source. LP from glucose-grown cells revealed a mean diameter of 650 nm with a hydrophobic core mainly formed of triacylglycerols (TAG) and a minor amount of steryl esters (SE). Oleic acid was the major fatty acid species esterified in LP. When cells were grown on oleic acid, LP size increased 3.8-fold, the particles exhibited a significantly lower ratio of TAG to SE, and the relative amount of oleic acid in LP lipids increased compared to cells grown on glucose. Analysis of LP proteins revealed an increasing number of polypeptides when cells were shifted from glucose- to oleic acid-containing medium. Twenty-one major LP proteins were identified under both growth conditions, and additional nine polypeptides were specific for growth on oleic acid. Identification of these proteins by MS and comparison of the deduced ORFs to those from Saccharomyces cerevisiae revealed that most proteins of Y. lipolytica LP are involved in lipid metabolism. LP proteins specific for growth on oleic acid are also enzymes involved in lipid metabolism, but some of them are also components of the intracellular traffic machinery. Thus, proteom analysis of LP proteins suggests involvement of this compartment in different cell biological processes.  相似文献   

18.
Abstract Specificity of peptide transport systems in Candida albicans was studied using as an experimental tool novel anticandidal peptides, containing the N3-4-methoxyfumaroyl- l -2,3-diamino-propanoic acid residue. Studies on cross-resistance and on peptide uptake by spontaneous mutants resistant to toxic peptides, confirmed the multiplicity of peptide permeases in Candida albicans . At least two peptide permeases exist in this microorganism; the first one, specific for di- and tripeptides and the second, for oligopeptides containing 3–6 amino acids. The rate of the tritetra tetra-, penta- and hexapeptide transport in the mycelial form of Candida albicans is about 2-times higher than in the yeast form, while that of dipeptides is markedly reduced.
Tripeptides are proposed as the most efficient carriers for the delivery of 'warhead' amino acids into Candida albicans cells.  相似文献   

19.
Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library. Four mutations affected only alkaline protease expression and identified the homolog of Saccharomyces cerevisiae SIN3. Eighty-nine mutations affected the expression of both proteases and identified 10 genes. Five of them define a conserved Rim pathway, which acts, as in other ascomycetes, by activating alkaline genes and repressing acidic genes at alkaline pH. Our results further suggest that in Y. lipolytica this pathway is active at acidic pH and is required for the expression of the acidic AXP1 gene. The five other genes are homologous to S. cerevisiae OPT1, SSY5, VPS28, NUP85, and MED4. YlOPT1 and YlSSY5 are not involved in pH sensing but define at least a second protease regulatory pathway.  相似文献   

20.
Yarrowia lipolytica has recently emerged as a prominent microbial host for production of terpenoids. Its robust metabolism and growth in wide range of substrates offer several advantages at industrial scale. In the present study, we investigate the metabolic potential of Y. lipolytica to produce isoprene. Sustainable production of isoprene has been attempted through engineering several microbial hosts; however, the engineering studies performed so far are challenged with low titers. Engineering of Y. lipolytica, which have inherent high acetyl-CoA flux could fuel precursors into the biosynthesis of isoprene and thus is an approach that would offer sustainable production opportunities. The present work, therefore, explores this opportunity wherein a codon-optimized IspS gene (single copy) of Pueraria montana was integrated into the Y. lipolytica genome. With no detectable isoprene level during the growth or stationary phase of modified strain, attempts were made to overexpress enzymes from MVA pathway. GC-FID analyses of gas collected during stationary phase revealed that engineered strains were able to produce detectable isoprene only after overexpressing HMGR (or tHMGR). The significant role of HMGR (tHMGR) in diverting the pathway flux toward DMAPP is thus highlighted in our study. Nevertheless, the final recombinant strains overexpressing HMGR (tHMGR) along with Erg13 and IDI showed isoprene titers of ~500 μg/L and yields of ~80 μg/g. Further characterization of the recombinant strains revealed high lipid and squalene content compared to the unmodified strain. Overall, the preliminary results of our laboratory-scale studies represent Y. lipolytica as a promising host for fermentative production of isoprene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号