首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many bumblebee species have been suffering from significant declines across their ranges in the Northern Hemisphere over the last few decades. The remaining populations of the rare species are now often isolated due to habitat fragmentation and have reduced levels of genetic diversity. The persistence of these populations may be threatened by inbreeding depression, which may result in a higher susceptibility to parasites. Here we investigate the relationship between genetic diversity and prevalence of the parasitic mite Locustacarus buchneri in bumblebees, using the previously-studied system of Bombus muscorum and Bombus jonellus in the Western Isles of Scotland. We recorded L. buchneri prevalence in 17 populations of B. muscorum and 13 populations of B. jonellus and related the results to levels of heterozygosity. For B. muscorum, we found that prevalence of the mite was higher in populations with lower genetic diversity but there was no such relationship in the more genetically diverse B. jonellus. In contrast to population-level measures of genetic diversity, the heterozygosity of individual bees was not correlated with infection status. We suggest population-level genetic homogeneity may facilitate parasite transmission and elevate prevalence, with potential consequences for population persistence.  相似文献   

2.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

3.
Parasites and pathogens are possibly key evolutionary forces driving recognition systems. However, empirical evidence remains sparse. The ubiquitous pioneering ant Formica fusca is exploited by numerous socially parasitic ant species. We compared the chemical cue diversity, egg and nest mate recognition abilities in two Finnish and two UK populations where parasite pressure is high or absent, respectively. Finnish populations had excellent egg and nest mate discrimination abilities, which were lost in the UK populations. The loss of discrimination behaviour correlates with a loss in key recognition compounds (C25-dimethylalkanes). This was not owing to genetic drift or different ecotypes since neutral gene diversity was the same in both countries. Furthermore, it is known that the cuticular hydrocarbon profiles of non-host ant species remain stable between Finland and the UK. The most parsimonious explanation for the striking difference in the cue diversity (number of C25-dimethylalkanes isomers) between the UK and Finland populations is the large differences in parasite pressure experienced by F. fusca in the two countries. These results have strong parallels with bird (cuckoo) studies and support the hypothesis that parasites are driving recognition cue diversity.  相似文献   

4.
The abundance and diversity of parasites vary among different populations of host species. In some host-parasite associations, much of the variation seems to depend on the identity of the host species, whereas in other cases it is better explained by local environmental conditions. The few parasite taxa investigated to date make it difficult to discern any general pattern governing large-scale variation in abundance or diversity. Here, we test whether the abundance and diversity of gamasid mites parasitic on small mammals across different regions of the Palaearctic are determined mainly by host identity or by parameters of the abiotic environment. Using data from 42 host species from 26 distinct regions, we found that mite abundances on different populations of the same host species were more similar to each other than expected by chance, and varied significantly among host species, with half of the variance among samples explained by differences between host species. A similar but less pronounced pattern was observed for mite diversity, measured both as species richness and as the taxonomic distinctness of mite species within an assemblage. Strong environmental effects were also observed, with local temperature and precipitation correlating with mite abundance and species richness, respectively, across populations of the same host species, for many of the host species examined. These results are compared to those obtained for other groups of parasites, notably fleas, and discussed in light of attempts to find general rules governing the geographical variation in the abundance and diversity of parasite assemblages.  相似文献   

5.
This study investigated the endosymbiotic bacteria living inside the poultry red mite collected from five samples of one commercial farm from the UK and 16 farms from France using genus-specific PCR, PCR-TTGE and DNA sequencing. Endosymbiotic bacteria are intracellular obligate organisms that can cause several phenotypic and reproductive anomalies to their host and they are found widespread living inside arthropods. The farm sampled from the UK was positive for bacteria of the genera Cardinium sp. and Spiroplasma sp. From France, 7 farms were positive for Cardinium sp., 1 farm was positive for Spiroplasma sp., 1 farm was positive for Rickettsiella sp. and 2 farms were positive for Schineria sp. However, it was not possible to detect the presence of the genus Wolbachia sp. which has been observed in other ectoparasites. This study is the first report of the presence of endosymbionts living inside the poultry red mite. The results obtained suggest that it may be possible that these bacterial endosymbionts cause biological modifications to the poultry red mite.  相似文献   

6.
The great green bush-cricket, Tettigonia viridissima, is at the northern limits of its geographic distribution in the UK and has suffered a significant reduction in population abundance and range over the last 50 years, now being largely confined to the southern UK. This study uses five characters to investigate differences between UK and mainland Western European populations, questioning the possibility that UK populations might represent a distinct species or sub-species and thus deserve special conservation status. Males of T. viridissima from UK, France and Spain were compared using morphometry, flight, male calling song and analysis of mitochondrial DNA sequences. Results suggest morphological differences between UK population samples and continental Europe with the UK samples showing shorter wing length relative to body length than populations in continental Europe. Morphological differences between French and Spanish populations followed a size cline related to latitude with more southerly populations showing larger features. Analysis of male flight distances and calling song showed significant differences with increased flight distance and minimum stridulation following a southerly latitude which correlates with wing length results. No differences consistent with geographical distributions were found in mitochondrial DNA COI sequence alignments. Morphological differences could be due to developmental differences linked to differing temperature clines or a non-adaptive difference caused by the colonisation history of the species. The consequences of morphometric variation on flight function and stridulation in bush-crickets are discussed.  相似文献   

7.
Varroa (Varroa destuctor Anderson and Trueman) populations in honey bee (Apis mellifera L.) colonies might be kept at low levels by well-timed miticide applications. HopGuard® (HG) that contains beta plant acids as the active ingredient was used to reduce mite populations. Schedules for applications of the miticide that could maintain low mite levels were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on defined parameters for efficacy of the miticide and predictions of varroa population growth generated from a mathematical model of honey bee colony–varroa population dynamics. Colonies started from package bees and treated with HG in the package only or with subsequent HG treatments in the summer had 1.2–2.1 mites per 100 bees in August. Untreated controls averaged significantly more mites than treated colonies (3.3 mites per 100 bees). By October, mite populations ranged from 6.3 to 15.0 mites per 100 bees with the lowest mite numbers in colonies treated with HG in August. HG applications in colonies started from splits in April reduced mite populations to 0.12 mites per 100 bees. In September, the treated colonies had significantly fewer mites than the untreated controls. Subsequent HG applications in September that lasted for 3 weeks reduced mite populations to levels in November that were significantly lower than in colonies that were untreated or had an HG treatment that lasted for 1 week. The model accurately predicted colony population growth and varroa levels until the fall when varroa populations measured in colonies established from package bees or splits were much greater than predicted. Possible explanations for the differences between actual and predicted mite populations are discussed.  相似文献   

8.
Partial sequences of mitochondrial DNA 16S rDNA and COI genes (395 bp and 498 bp respectively) were sequenced from samples of ten cultured populations of Macrobrachium rosenbergii (Giant Freshwater Prawn – GFP) in Zhejiang, Guangdong and Guangxi Provinces in China and two wild populations of GFP from Mekong River and Dongnai River in Viet Nam. Five haplotypes of 16S rDNA were identified in the 360 samples. The wild populations displayed nucleotide diversity (π) of 0.0008 and 0.0003, and genetic diversity (h) of 0.3030 and 0.1310 in the Mekong River and Dongnai River respectively. The cultured populations displayed no significant genetic diversity. COI sequences identified 17 haplotypes based on 21 polymorphic sites. At this marker, the 12 populations showed a range of h from 0.1290 to 0.6940 and π from 0.0003 to 0.0073. The largest genetic distance (Da) among the 12 populations was 0.0065 (between ZJB and BT/DN populations) and the lowest Da was 0.0003 (between GDD and GDA populations). The wild populations had higher genetic diversity than the cultured populations, but three of cultured populations from Zhejiang (ZJA, ZJB and ZJC) had π higher than wild populations, because they originated from Thailand, Bangladesh and the Mekong River in Viet Nam.  相似文献   

9.
The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite’s reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.  相似文献   

10.
Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.  相似文献   

11.
Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors governing host–parasite interactions. Even though invasive parasites are considered of major biological importance, little is known about their adaptative potential when infesting the new hosts. Here, the genetic diversification of Varroa destructor, a novel parasite of Apis mellifera originating from Asia, was investigated using population genetics to determine how the genetic structure of the parasite changed in distinct European populations of its new host. To do so, mites infesting two categories of hosts in four European regions were compared: (a) adapted hosts surviving through means of natural selection, thereby expected to impose strong selective pressure on the mites, and (b) treated host populations, surviving mite infestations because acaricides are applied, therefore characterized by a relaxed selection imposed by the host on the mites. Significant genetic divergence was found across regions, partially reflecting the invasion pattern of V. destructor throughout Europe and indicating local adaptation of the mite to the host populations. Additionally, varying degrees of genotypic changes were found between mites from adapted and treated colonies. Altogether, these results indicate that V. destructor managed to overcome the genetic bottlenecks following its introduction in Europe and that host‐mediated selection fostered changes in the genetic structure of this mite at diverse geographic scales. These findings highlight the potential of parasites to adapt to their local host populations and confirm that adaptations developed within coevolutionary dynamics are a major determinant of population genetic changes.  相似文献   

12.
While currently in a state of recovery in the United Kingdom (UK), the grayling (Thymallus thymallus) remains of conservation interest due to its historical decline, socio-economic value and the potential impact of hatchery-reared stock fish on the genetic structure and diversity of wild populations. However, little is known about the levels and distribution of genetic diversity among UK grayling populations. To this end, 27 UK populations of grayling were genotyped across 10 microsatellite loci and sequenced at the mtDNA D-Loop. All populations clustered into four higher-level groups: Northern England, Southern England, Wales, and group consisting of a mixture of native and introduced populations. Ten populations showed evidence of bottleneck or founder effects, and the effective population size (Ne) was low in all populations. In most cases, historical stocking records agreed with the genetic relationships revealed in the study. A D-Loop haplotype network supported the groupings observed in the nuclear data, while phylogenetic inference places the UK populations amongst Central European samples. The combined datasets demonstrate that many of the UK populations can be treated as separate Management Units and we recommend that to preserve population specific genetic diversity, that stocking should be an intervention of last resort. However, if stocking is deemed essential, brood stock should originate from the river to be stocked.  相似文献   

13.
The red squirrel (Sciurus vulgaris) population in the United Kingdom has declined over the last century and is now on the UK endangered species list. This is the result of competition from the eastern grey squirrel (S. carolinensis) which was introduced in the 19th century. However, recent evidence suggests that the rate of population decline is enhanced by squirrelpox disease, caused by a viral infection carried asymptomatically by grey squirrels but to which red squirrels are highly susceptible. Population genetic diversity provides some resilience to rapidly evolving or exotic pathogens. There is currently no data on genetic diversity of extant UK squirrel populations with respect to genes involved in disease resistance. Diversity is highest at loci involved in the immune response including genes clustered within the major histocompatibility complex (MHC). Using the class II DRB locus as a marker for diversity across the MHC region we genotyped 110 red squirrels from locations in the UK and continental Europe. Twenty-four Scvu-DRB alleles at two functional loci; Scvu-DRB1 and Scvu-DRB2, were identified. High levels of diversity were identified at both loci in the continental populations. In contrast, no diversity was observed at the Scvu-DRB2 locus in the mainland UK population while a high level of homozygosity was observed at the Scvu-DRB1 locus. The red squirrel population in the UK appears to lack the extensive MHC diversity associated with continental populations, a feature which may have contributed to their rapid decline.  相似文献   

14.
In the last few decades unimproved semi-natural grasslands have been affected by intensification of land use and habitat fragmentation. Because of their biodiversity these species-rich grasslands are of high conservation importance and efforts are under way to restore such habitats. Detailed knowledge of within species diversity will aid deciding on the optimal seed source for such restoration projects, e.g. local genotypes or ecotypes. Rhinanthus minor is a species that is typically found in semi-natural grasslands and is commonly used in grassland restoration projects. This is because R. minor is a hemiparasitic plant that takes minerals and nutrients from its host, which in turn decreases the host's biomass and leads to opportunities for less competitive species in the vegetation. Here, we investigate genetic diversity within and between R. minor populations. This allowed us to test whether the six different subspecies of R. minor that have been described in the UK, based on their morphology, flowering time, and habitat, can be differentiated using molecular markers. We identified moderate levels of genetic differentiation between R. minor populations within the UK. In addition, R. minor individuals from the UK appear to be distinct from R. minor and Rhinanthus angustifolius individuals from other European countries based on microsatellite genotyping and DNA sequencing of cpDNA and rDNA ITS. The molecular markers used in the current study did not separate populations of R. minor based on either their subspecies or habitat. The implication for the use of R. minor in grassland restoration projects seems to be that it is not necessary to use local seeds or seeds from the same subspecies.  相似文献   

15.
Human dispersal of organisms is an important process modifying natural patterns of biodiversity. Such dispersal generates new patterns of genetic diversity that overlie natural phylogeographical signatures, allowing discrimination between alternative dispersal mechanisms. Here we use allele frequency and DNA sequence data to distinguish between alternative scenarios (unassisted range expansion and long range introduction) for the colonization of northern Europe by an oak-feeding gallwasp, Andricus kollari. Native to Mediterranean latitudes from Portugal to Iran, this species became established in northern Europe following human introduction of a host plant, the Turkey oak Quercus cerris. Colonization of northern Europe is possible through three alternative routes: (i) unassisted range expansion from natural populations in the Iberian Peninsula; (ii) unassisted range expansion from natural populations in Italy and Hungary; or (iii) descent from populations imported to the UK as trade goods from the eastern Mediterranean in the 1830s. We show that while populations in France were colonized from sources in Italy and Hungary, populations in the UK and neighbouring parts of coastal northern Europe encompass allozyme and sequence variation absent from the known native range. Further, these populations show demographic signatures expected for large stable populations, rather than signatures of rapid population growth from small numbers of founders. The extent and spatial distribution of genetic diversity in the UK suggests that these A. kollari populations are derived from introductions of large numbers of individuals from each of two genetically divergent centres of diversity in the eastern Mediterranean. The strong spatial patterning in genetic diversity observed between different regions of northern Europe, and between sites in the UK, is compatible with leptokurtic models of population establishment.  相似文献   

16.
House dust mites (HDM) have been shown to produce allergens causing atopic allergies in human beings, known in medicine as house-dust-mite allergy or atopy. Over the past 25 years (1981–2006) a survey of dust samples from different places was made in the southern part of Poland, to determine the diversity of indoor acarofauna. In total, 1,532 samples were taken from dwellings, hospitals, libraries, research laboratories, drug-stores, and offices and other workplaces. More than 30 mite species were found of which the most abundant and common were HDM, especially Dermatophagoides farinae. Highest mite densities (g?1 dust) were noted in dwellings. This survey revealed differences in the occurrence and prevalence of various species of domestic mites between and within (dwellings in) geographical areas. This knowledge may be useful in the field of forensic medicine.  相似文献   

17.
Island populations are often thought to be more susceptible to the loss of genetic diversity as a consequence of limited population size and genetic drift, greater susceptibility to detrimental stochastic events and low levels of immigration. However the geographic isolation of islands may create refuges for native crop species whose genetic diversity is threatened from the genetic erosion occurring in mainland areas as a result of crop-wild gene flow and genetic swamping. Many UK islands remain uncharacterised in terms of plant genetic diversity. In this study we compared the genetic diversity of mainland populations and landraces of Trifolium repens with wild populations collected from the islands surrounding the UK, including the island of Hirta in the St Kildan archipelago. Individuals from St Kilda represent a unique conservation resource, with populations both highly differentiated from UK mainland populations and genetically distinct from cultivated varieties, whilst able to retain diversity through limited human influence on the islands. In contrast, there is relative genetic similarity of wild UK populations to cultivated forms highlighted in mainland populations, but with geographic barriers preventing complete homogenisation of the mainland UK genepool. We underline the need for conservation priorities to include common species that are threatened by gene flow from cultivation, and draw attention to the potential of islands to preserve natural levels of genetic diversity.  相似文献   

18.
The harsh climate and patchy distribution of habitable terrestrial ecosystems constrain soil invertebrate communities in continental Antarctica. The Windmill Islands in East Antarctica have a relatively gentle climate by Antarctic standards, and the region supports some of the most well-developed moss beds on the continent. These moss beds and soils are known to sustain invertebrate communities dominated by nematodes, rotifers and tardigrades, but our knowledge of the diversity and composition of these communities remains limited. We extracted soil fauna from 74 soil samples representing a wide range of microhabitats, and 24 moss samples, collected at Clark Peninsula, Bailey Peninsula and Robinson Ridge in the Windmill Islands during the 2012–2013 austral summer. Invertebrates were present in all samples, but densities varied considerably both within and between sites with limited correlation with edaphic variables or cover type. Taxa found included two species of nematodes (Plectus murrayi; Plectus frigophilus), one mite (Nanorchestes antarcticus) as well as tardigrades and rotifers (enumerated only). No springtails were found in this study, but individuals of the genus Cryptopygus were later recovered from moss collected near Casey Station. The Windmill Islands soils and moss beds support dense populations of soil fauna. However, despite the relatively mild climate conditions and favorable soil properties, species diversity is low. The diversity is possibly limited by recent deglaciation and limited dispersal opportunities to the region. Given favorable local conditions, it is likely that colonizing species will perform well, whether these arrive by natural means or are accidentally introduced by humans.  相似文献   

19.
Over the past 30 years the coconut mite Aceria guerreronis Keifer has emerged as one of the most important pests of coconut and has recently spread to most coconut production areas worldwide. The mite has not been recorded in the Indo-Pacific region, the area of origin of coconut, suggesting that it has infested coconut only recently. To investigate the geographical origin, ancestral host associations, and colonization history of the mite, DNA sequence data from two mitochondrial and one nuclear region were obtained from samples of 29 populations from the Americas, Africa and the Indo-ocean region. Mitochondrial DNA 16S ribosomal sequences were most diverse in Brazil, which contained six of a total of seven haplotypes. A single haplotype was shared by non-American mites. Patterns of nuclear ribosomal internal transcribed spacer (ITS) variation were similar, again with the highest nucleotide diversity found in Brazil. These results suggest an American origin of the mite and lend evidence to a previous hypothesis that the original host of the mite is a non-coconut palm. In contrast to the diversity in the Americas, all samples from Africa and Asia were identical or very similar, consistent with the hypothesis that the mite invaded these regions recently from a common source. Although the invasion routes of this mite are still only partially reconstructed, the study rules out coconut as the ancestral host of A. guerreronis, thus prompting a reassessment of efforts using quarantine and biological control to check the spread of the pest.  相似文献   

20.
The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive phytophagous mite that was recently introduced into The Americas. The predatory mite Amblyseius largoensis Muma (Acari: Phytoseiidae) has been the only natural enemy consistently found in association with RPM. This study aimed to determine if A. largoensis populations from the Indian Ocean Islands (La Réunion and Mauritius) and the Americas (Brazil, Trinidad and Tobago and the USA) consist a taxonomic unit or a group of cryptic species. First, the morphological variability among the A. largoensis populations from these areas was evaluated through morphometric analyses of 36 morphological traits. Then, their genetic variability and phylogenetic relationships were assessed based on two target DNA fragments: the nuclear Internal Transcribed Spacer and the mithochondrial 12S rRNA. Finally, reproductive compatibility of the populations from La Réunion and Roraima, Brazil was evaluated. Morphometric differences between the A. largoensis specimens from La Réunion Island and the Americas were observed, most of them on the length of the setae. Molecular analysis indicated that the A. largoensis populations from the Indian Ocean Islands and the Americas belong to the same taxonomic entity, although to two well defined genetic groups. Crossings involving the A. largoensis populations from La Réunion Island and Roraima, Brazil revealed complete reproductive compatibility between these populations. Information on the morphometric and genetic variability among studied A. largoensis populations can be further exploited in future studies to follow colonization of Indian Ocean Islands populations in the Americas, in the case of field releases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号