首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
EFFECTIVE EXCITATION, PRECEDING THE MECHANICAL RESPONSE IN FROG TWITCH MUSCLES, INVOLVES TWO DISTINCT EVENTS: depolarization of the excitable membrane and the flow of internal currents. To distinguish between the effects of these two potential factors in activation of the contractile machinery, experiments ought to be conducted in which one or the other is excluded. Our experiments are designed to distinguish between these effects by indirect methods. Depolarization in a longitudinal electric field can be expected to be greatest at the ends where current leaves the muscle fibers (space constant at [K] = 16 mM/liter is >1 mm.), whereas the internal longitudinal current is known to be greatest in the middle portion. Depolarization, therefore, should affect the ends more strongly and internal current the middle portion. Our experiments show that non-propagating frog twitch muscles shorten, during isotonic work, along their whole length and not only at their ends, when effectively stimulated in a longitudinal A.C. field. At a field strength about twice the new threshold value (at [K](o) = 16 mM) shortening is distinctly greater in the middle portion of the muscle than at the ends. The muscles, although temporarily non-propagating, remain intact throughout the experiment, as demonstrated by complete recovery after repolarization. These findings may be taken as an indication that internal currents are more directly linked to activation than is depolarization, but the latter is an essential priming step, which must precede or coincide with effective current flow.  相似文献   

2.
Succinate dehydrogenase (SDH) activity levels of motoneurons in the rostral, middle, and caudal portions of the dorsolateral region of the ventral horn of the 6th lumbar (L6) segment of the rat spinal cord were determined after 14 days of spaceflight and after 9 days of recovery on Earth. The mean SDH activity of motoneurons with cell body sizes between 500 and 800 micrometers2 located in the rostral portion of the L6 segment was lower in spaceflight than in age-matched control rats. The decrease in motoneuron SDH activity persisted for at least 9 days of recovery on Earth. In contrast, the mean SDH activity of motoneurons located in the middle and caudal portions of the L6 segment were unaffected by spaceflight and recovery on Earth. The motoneurons in the rostral portion of the L6 segment presumably innervate both high- and low-oxidative fibers in hindlimb muscles, whereas those in the middle and caudal portions presumably innervate perineal muscles that are comprised only of low-oxidative fibers. These data indicate that moderate-sized motoneurons, most likely innervating fibers in high-oxidative muscles, are responsive to the microgravity environment.  相似文献   

3.
Motor responses (MRs) of facial muscles to intracortical microstimulation (ICMS) of lightly anaesthetized outbred white mice were observed visually and recorded by means of photodiodes. ICMS rostral to bregma, within cortical band along sagittal suture (area 6) evoked mostly ipsilateral MRs of vibrissae and upper lip, more often from the left hemisphere. MRs of the lower jaw, tongue and larynx were induced by ICMS in symmetrical zones of both hemispheres. The lowest thresholds of ICMS, 2-20 mcA, were revealed at the depth from 0.8-1.1 mm up to 1.3-1.7 mm, i. e. in layers III and V. Short-latency (from 10 to 25 ms) MRs of the vibrissae, lip and jaw were evoked by high-frequency volleys of 2 to 5 pulses. The participation of some oligosynaptic components in cortico-facial descending projections in the white mouse is supposed.  相似文献   

4.
Heart rate, arterial blood pressure and respiratory rate responses to electrical stimulation of the nucleus tractus solitarii (NTS) were studied in unanaesthetized freely moving cats. Complex cardiovascular response patterns, mainly pressor responses, were obtained from stimulation of the portion of the NTS rostral to the obex. No significant difference was observed between the effects produced by stimulation of the NTS on the right and on the left side. These results indicate that the rostral portion of the NTS also plays a role in the cardiovascular control, and a functional asymmetry between the two sides does not exist at the level of the NTS.  相似文献   

5.
The origin of different branches of the facial nerve in the rabbit was determined by using retrograde transport of HRP. Either the proximal stump of specific nerves was exposed to HRP after transection, or an injection of the tracer was made into particular muscles innervated by a branch of the facial nerve. A clear somatotopic pattern was observed. Those branches which innervate the rostral facial musculature arise from cells located in the lateral and intermediate portions of the nuclear complex. Orbital musculature is supplied by neurons in the dorsal portion of the complex, with the more rostral orbital muscles receiving input from more laterally located cells while the caudal orbital region receives innervation from more medial regions of the dorsal facial nucleus. The rostral portion of the ear also receives innervation from cells located in the dorsomedial part of the nucleus, but the caudal aspect of the ear is supplied exclusively by cells located in medial regions. The cervical platysma, the platysma of the lower jaw, and the deep muscles (i.e., digastric and stylohyoid) receive input from cells topographically arranged in the middle and ventral portions of the nuclear complex. It is proposed that the topographic relationship between the facial nucleus and branches of the facial nerve reflects the embryological derivation of the facial muscles. Those muscles that develop from the embryonic sphincter colli profundus layer are innervated by lateral and dorsomedial portions of the nuclear complex. The muscles derived from the embryonic platysma layer, including the deep musculature, receive their input from mid to ventral regions of the nuclear complex.  相似文献   

6.
(1) The fine details of the motor organization of the forelimb, face, and tongue representation of the baboon (Papio h. anubis) primary motor cortex were studied in four adult animals, using intracortical microstimulation (ICMS). (2) A total of 293 electrode penetrations were made. ICMS was delivered to 10,052 sites, and of these, 6,186 sites were verified to have been located within the grey matter. Motor effects were evoked from 30% of these sites. (3) The baboon motor cortex is confined, in large part, to the cortical tissue lying along the anterior bank of the central sulcus. When the electrode penetrations were confined to the precentral gyrus, few sites were capable of evoking movement when stimulated by currents of 40 microA or less. (4) The details of the motor maps varied among the four animals; nonetheless, a general topographic organization existed, with the tongue musculature being represented most laterally, followed by a medial progression of the face, digits, wrist, forearm, and shoulder. Within the representation of a given body part, the muscles were organized as a mosaic, wherein the same muscle was multiply represented. (5) A zone of unresponsive cortex was observed to lie consistently between the face and forelimb representation in all four animals. Repeated electrode penetrations within the unresponsive zone failed to elicit muscle contractions even with stimulating currents as high as 80 microA. (6) Our results suggest that the baboon motor cortex is topographically organized; however, embedded within this overall pattern lies a fine-grained mosaic incorporating multiple representations of the same muscle.  相似文献   

7.
The influence of unilateral n. ischiadicus lesion of conductivity on the electromyographic characteristics of the rat gastrocnemius muscles was investigated. The lesion was made by n. ischiadicus crashing. Motor and reflex gastrocnemius muscles' responses caused by n. ischiadicus stimulation (single impulses of various intensity and 0.3 ms duration) were estimated on broken and symmetric hind-limb before and 1, 5, 10, 20 and 30 days after the nerve crashing. Considerable changes of threshold and amplitude of the registered gastrocnemius muscle responses were observed ipsi- and contralaterally. It is suggested that the central dependence of processes arising in the motor centres of symmetric gastrocnemius muscles, follows unilateral n. ischiadicus lesion.  相似文献   

8.
Motor axons form topographic maps on muscles: rostral motor pools innervate rostral muscles, and rostral portions of motor pools innervate rostral fibers within their targets. Here, we implicate A subfamily ephrins in this topographic mapping. First, developing muscles express all five of the ephrin-A genes. Second, rostrally and caudally derived motor axons differ in sensitivity to outgrowth inhibition by ephrin-A5. Third, the topographic map of motor axons on the gluteus muscle is degraded in transgenic mice that overexpress ephrin-A5 in muscles. Fourth, topographic mapping is impaired in muscles of mutant mice lacking ephrin-A2 plus ephrin-A5. Thus, ephrins mediate or modulate positionally selective synapse formation. In addition, the rostrocaudal position of at least one motor pool is altered in ephrin-A5 mutant mice, indicating that ephrins affect nerve-muscle matching by intraspinal as well as intramuscular mechanisms.  相似文献   

9.
Summary The expression of complex carbohydrate antigens was analysed in developing sympathoadrenal cells of the rat using monoclonal antibodies that react with unique carbohydrate structures. CC1 and CC4 are monoclonal antibodies that react specifically with -N-acetylgalactosamine and -galactose/-fucose moieties, respectively. CC1-reactive glycoconjugates are expressed in embryonic superior cervical ganglion (SCG) cells as early as embryonic day 15 (E15). CC4 is expressed in the SCG only for a brief period starting at E18 and then disappearing at P5. During their transient period of expression, CC1 antigens are expressed uniformly throughout the SCG at E15–17, but are then restricted to the rostral portion of the SCG from E18 to P4. CC4 is also concentrated in the rostral portion of the SCG between E21 and P4. In the adrenal medulla, CC1 and CC4 antigens display a post-natal onset of expression commencing approximately at P14 and continue to be expressed on a subset of cells which contain tyrosine hydroxylase (TH). The expression of CC1, however, is restricted to phenylethanolamine-N-methyltransferase-(PNMT)-negative chromaffin cells, whereas CC4 is not. CC1 and CC4-expressing cells appear to be scattered throughout the adrenal medulla without any particular topographic orientation. These findings suggest that the CC1 monoclonal antibody defines a stage-specific differentiation antigen in the sympathoadrenal lineage. Additionally, the CC1 antigen may confer important positional information in the embryonic SCG by distinguishing rostral from caudal neuronal cell bodies.  相似文献   

10.
Climbing fiber projections to the cerebellar paramedian lobule were investigated electrophysiologically by stimulation of bilateral superficial radial nerve (SR) and superficial peroneal nerve (SP) in the cat anesthetized with pentobarbitone. In the medial zone of the paramedian lobule, short latency climbing fiber responses to stimulation of the ipsilateral SR were recorded rostrally from the top caudal part of the intermediate folia and short latency responses to stimulation of the ipsilateral SP were obtained caudally from the bottom caudal part of the folia. In the central zone, long latency responses to stimulation of the bilateral SR and SP were obtained. "Four limbs area" in which these responses were recorded was 1.0-1.2 mm in width. Short latency responses to stimulation of the ipsilateral SR were observed rostrally from this area, and short and long latency responses to stimulation of the ipsilateral SP were distributed caudally from this area. In the lateral zone, short and long latency responses to stimulation of the ipsilateral SR were recorded rostrally from the rostral part of the intermediate folia, and long latency responses to stimulation of the ipsilateral SP were observed caudally from the caudal part of the folia. In the most lateral zone, short and long latency responses to stimulation of the ipsilateral SR were obtained rostrally from the rostral part of the intermediate folia, and long latency responses to stimulation of ipsilateral SP were recorded only in the bottom caudal part of the folia caudally from the caudal part of the folia.  相似文献   

11.
Summary 1. The lateral hypothalamus (LH) and the dorsal periaqueductal gray area (dPAG) are two important brain structures involved in central cardiovascular control.2. In the present study, we searched for possible rostrocaudal somatotopy in the neural connections from the three subdivisions of the LH (anterior—LHa; tuberal—LHt and posterior—LHp) to the different rostrocaudal portions of the dPAG.3. The bidirectional neuronal tracer biotinylated-dextran-amine (BDA) was microinjected into different rostrocaudal coordinates of the dPAG (AP 3.4–2.7 mm) of male Wistar rats. One week later, animals were sacrificed and brain slices were processed and analyzed to detect neuronal efferent projections from the LH to the dPAG.4. Neuronal cell body staining was observed along all the rostrocaudal axis of the LH when BDA was microinjected in more rostral dPAG coordinates. When the BDA was microinjected into more caudal dPAG regions, labeled neurons were observed only in the caudal portion of the LH.5. Efferent projections from the LHa were directed only to the rostral portion of the dPAG. Projections from the rostral and medial portions of the LHt were also directed to the rostral dPAG, whereas both rostral and caudal dPAG received projections from the caudal portion of the LHt. Efferent projections from the anterior portion of the LHp were directed to both rostral and caudal dPAG, whereas projections from the caudal LHp were only directed to the rostral portion of the dPAG.6. The results suggest a somatotopic correlation in LH projections to the dPAG with main connections to the rostral dPAG, which are efferent from the three divisions of the LH. More caudal regions of the dPAG received afferents only from posterior sites in the LH.7. Moreover, the results point out to extensive and complex neural somatotopic projections from all LH subdivisions to different rostrocaudal portions of the dPAG, reinforcing the idea of significant functional interactions between the brain structures.  相似文献   

12.
江豚鼻道肌的解剖和构筑研究   总被引:1,自引:1,他引:1  
江豚的鼻部肌共分为后外肌、前外肌、后内肌、前内肌和深肌5层,无间肌和大小内肌较退化,无对角膜肌。通过测定各肌的肌重、平均肌纤维长、平均肌小节长以及肌纤维角度,计算了各肌的生理横截面积,估计最大强直张力和肌鲜重对估计最大强直张力之比值等指标。鼻部肌各肌的相对肌纤维长度相似。各鼻部肌的肌纤维角度均为零。前部肌比后部肌具有较大的收缩速度和收缩位移优势,后部肌则具有较强的张力产生能力。着于额隆和唇部吻肌的张力产生能力很强。  相似文献   

13.
Smith  DV; Li  CS 《Chemical senses》1998,23(2):159-169
The effects of gamma-aminobutyric acid (GABA) and the GABAA receptor antagonist bicuculline methiodide (BICM) on the activity of taste- responsive neurons in the nucleus of the solitary tract (NST) were examined electrophysiologically in urethane-anesthetized hamsters. Single neurons in the NST were recorded extracellularly and drugs (21 nl) were microinjected into the vicinity of the cell via a multibarrel pipette. The response of each cell was recorded to lingual stimulation with 0.032 M NaCl, 0.032 M sucrose, 0.0032 M citric acid and 0.032 M quinine hydrochloride (QHCl). Forty-six neurons were tested for the effects of GABA; the activity of 29 cells (63%) was inhibited by 5 mM GABA. Whether activity was elicited in these cells by repetitive anodal current stimulation (25 microA, 0.5 s, 0.1 Hz) of the tongue (n = 13 cells) or the cells were spontaneously active (n = 13 cells), GABA produced a dose-dependent (1, 2 and 5 mM) decrement in activity. Forty- seven NST neurons were tested for the effects of BICM on their responses to chemical stimulation of the tongue; the responses of 28 cells (60%) were enhanced by 10 mM BICM. The gustatory responses of 26 of these cells were tested with three concentrations (0.2, 2 and 10 mM) of BICM, which produced a dose-dependent increase in both spontaneous activity and taste-evoked responses. Nine of these neurons were sucrose- best, seven were NaCl-best, eight were acid-best and two responded best to QHCl. The responses to all four tastants were enhanced, with no difference among neuron types. For 18 cells that were tested with two or more gustatory stimuli, BICM increased their breadth of responsiveness to their two most effective stimuli. These data show that approximately 60% of the taste-responsive neurons in the rostral NST are inhibited by GABA and/or subject to a tonic inhibitory influence, which is mediated by GABAA receptors. The modulation of these cells by GABA provides a mechanism by which the breadth of tuning of the cell can be sharpened. Modulation of gustatory activity following a number of physiological changes could be mediated by such a GABAergic circuit.   相似文献   

14.
15.
Several studies have demonstrated that cerebellar deep nuclei, particularly the rostral fastigial nucleus (FNr), are involved in respiratory modulation. These nuclei receive inputs from the contralateral caudal inferior olivary nuclei of the medulla. The objectives of this study were to determine whether electrical and chemical activation of the vicinity of the caudal inferior olivary nuclei (vIOc) affected respiration and, if true, whether the FNr was involved in the vIOc stimulation-evoked ventilatory responses. Experiments were conducted in 30 anesthetized and spontaneously breathing rats. Our results showed that 1) electrical (25 or 100 microA at 10 or 20 Hz for 10 s) and chemical (1 or 100 mM, 25-50 nl N-methyl-D-aspartate) stimulation of the vIOc augmented ventilation predominantly via increasing tidal volume; 2) the responses to the electrical stimulation were almost eliminated by lesion of the contralateral FNr via microinjection of ibotenic acid; and 3) the respiratory responses to electrical stimulation in the vicinity of the rostral IO were 65-70% smaller compared with that evoked by vIOc stimulation. These findings strongly suggest that vIOc neurons play a significant role in modulation of respiratory activity, largely depending on their projections to the FNr.  相似文献   

16.
The facilitatory effects evoked on the motor periphery by the activation of neuronal pools in cerebellar nuclei were analized in 13 cats. The aim of the work was to compare the frequency and the characteristics of the motor facilitations induced on the ipsilateral forelimb by the microstimulation of cerebellar foci in the fastigial (CBM or in the interposital (NIA) nucleus. CBM or NIA sites, previously identified for the motor effects, were microstimulated, together with the contralateral motor cortex, to give evidence of the facilitations. It was observed that 51% of the NIA motor sites, 46% of the rostral and 33% of the caudal CBM ones, were able, when activated, to evoke facilitatory effects on at least one muscle. The most frequent motor pattern observed following NIA microstimulation was the contraction of a proximal muscle and simultaneously the facilitation of a distal one. Similar responses were detected upon activation of neuronal pools in both zones of CBM. A good number of CBM foci (39% in the rostral division and 33% in the caudal one), however, was unable to induce facilitation, eliciting, upon stimulation, only massive axial movements. Distal muscles were involved by facilitatory effects in a higher number of cases following NIA stimulation (61% of all the facilitatory responses) than CBM rostral (39%) or caudal (43%) one. Furthermore, a particular characteristic of a good percentage of CBM facilitating foci (36% in rostral and 28% in caudal CBM) was the capability to elicit motor activity in the contralateral side and simultaneously facilitation in the ipsilateral one.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
为探讨不同生态治理小流域土壤性质的差异,本研究分别从坡向、坡位、区段和土层4个方面分析了人工刺槐林流域杨家沟(YJG)与封禁荒草地流域董庄沟(DZG)土壤有机质(SOM)、土壤容重(BD)和黏粒含量(CC)的空间分异.结果表明: YJG与DZG的SOM、BD、CC分别为12.78 g·kg-1、1.24 g·cm-3、19.2%与11.13 g·kg-1、1.21 g·cm-3、18.2%,前者均略高,但差异不显著.各指标均为东坡大于西坡;SOM和CC顺坡向下有增加趋势,BD变异最小;SOM由上游至下游呈增大趋势,BD和CC不断减小;由土表向下至60 cm土深,BD和CC不断增大,SOM不断减小.各指标的空间敏感性依次为CC>SOM>BD,空间因素的影响效用依次为土层>区段>坡向>坡位.上游CC、中游BD和CC在两流域间的差异显著,各指标对坡位、区段、土层的敏感性均为YJG<DZG.  相似文献   

18.
The intrinsic laryngeal muscles of the horse, donkey, sheep, ox, pig, dog and cat were examined for myosin ATPase, following acid and alkali pre-incubation, SDH and M-alphaGPDH activities. In all laryngeal muscles two fibre types, betaR and alphaR, belonging to slow and fast-contracting, fatigue-resistant motor units (types S and FR) were present in different proportions. The alphaW fibre type, belonging to fast-contracting and fatigue-resistant motor units was absent (type FF). The alphaR fibres of the dog and the cat were subdivided into groups by the various degrees of acid stable myosin ATPase, oxidative and glycolytic activities. In the ox and pig laryngeal muscles, the same fibres showed an atypical myosin ATPase activity, as high as the fast-contracting fibres but acid-resistant like the slow-twitch fibres. The most uniform muscle was the CAD, which was formed of a higher percentage of slow-twitch fibres than the other laryngeal muscles of the same species. Also the VE muscle was very uniform in the dog, horse and donkey but the fast-twitch fibres were by far the most numerous, the highest in fact among all the laryngeal muscles. In the TA muscle of the cat, sheep and ox, the percentage of fast-twitch fibres was very high in the rostral portion decreasing gradually towards the caudal portion. Thus it was possible to separate histochemically the TA muscle in the rostral (pars ventricularis) and caudal (pars vocalis) portions which are related to the VE and the VO muscles of the dog, horse and donkey. In the VO muscle the slow-twitch fibres are more numerous than in the VE. The two portions of the TA were not detected by histochemical methods in the pig. However, this muscle has the highest percentage of fast-twitch fibres. The qualitative and quantitative data presented in this paper together with the data reported in the literature, enable us to correlate morphological and functional aspects of fibre composition among the species.  相似文献   

19.
We have previously found that the myotome is formed by a first wave of pioneer cells generated along the medial epithelial somite and a second wave emanating from the dorsomedial lip (DML), rostral and caudal edges of the dermomyotome (Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998a) Mech. Dev. 74, 59-73; Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998b) Development 125, 4259-4271). In this study, we have addressed the development and precise fate of the ventrolateral lip (VLL) in non-limb regions of the axis. To this end, fluorescent vital dyes were iontophoretically injected in the center of the VLL and the translocation of labeled cells was followed by confocal microscopy. VLL-derived cells colonized the ventrolateral portion of the myotome. This occurred following an early longitudinal cell translocation along the medial boundary until reaching the rostral or caudal dermomyotome lips from which fibers emerged into the myotome. Thus, the behavior of VLL cells parallels that of their DML counterparts which colonize the opposite, dorsomedial portion of the myotome. To precisely understand the way the myotome expands, we addressed the early generation of hypaxial intercostal muscles. We found that intercostal muscles were formed by VLL-derived fibers that intermingled with fibers emerging from the ventrolateral aspect of both rostral and caudal edges of the dermomyotome. Notably, hypaxial intercostal muscles also contained pioneer myofibers (first wave) showing for the first time that lateral myotome-derived muscles contain a fundamental component of fibers generated in the medial domain of the somite. In addition, we show that during myotome growth and evolution into muscle, second-wave myofibers progressively intercalate between the pioneer fibers, suggesting a constant mode of myotomal expansion in its dorsomedial to ventrolateral extent. This further suggests that specific hypaxial muscles develop following a consistent ventral expansion of a 'compound myotome' into the somatopleure.  相似文献   

20.
The present study was to investigate the localization of preganglionic parasympathetic neurons of gallbladder in brain stem by anatomical and functional approaches. Male or female rabbits (n = 11) were anesthetized with sodium pentobarbital (30 mg/kg, i.v.). Cholera toxin B conjugated to horseradish peroxidase (CB-HRP) was injected into the gallbladder wall. Four days later, animals were re-anesthetized and perfused transcardially with paraformaldehyde solution in a 0.1 M phosphate buffer. The rabbit brain was then frozenly sectioned. The sections were processed for HRP label and stained with neutral red. Another group of rabbits (n = 54) were anesthetized by urethane (1 g/kg) after fasting for 18-24 hours, Gallbladder pressure (GP) was measured by inserting a frog bladder filled with normal saline into the gallbladder. Myoelectrical activity of the sphincter of Oddi (SO) was induced by a pair of copper electrodes. A glass tube (30 microm tip diameter) connected with a microsyringe was directed to the dorsal vagal complex (DVC) for microinjection. Majority of retrogradely labeled cells was found bilaterally in dorsal motor nucleus of the vagus nerve (DMV) throughout the length, except the rostral and caudal part. These cells were distributed in subnuclei parvicellularis or mediocellularis of DMV. Some labeled perikarya located in the medial subnucleus of the solitary tract (mNTS). Thyrotropin-releasing hormone (TRH, 1.3 mmol/L, 0.2 microl) microinjected into the rostral portion of the DVC (including DMV and NTS) enhanced the motility of gallbladder and SO. Microinjection of TRH at the middle part of DVC seldom induces excitatory effects on the gallbladder or SO. TRH microinjected into the caudal portion of the DVC elicited weaker response of gallbladder and SO than rostral portion. Our results indicated that DMV is one of the most important original nuclei of gallbladder's vagus nerves and mNTS may be also involved in the control of gallbladder's parasympathetic activity. Neurons that innervate the gallbladder distribute at most part of DVC, and are relatively dense at rostral and caudal position of DMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号