首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 RFLPs, AFLPs, RAPDs and SSRs were used to determine the genetic relationships among 18 cultivated barley accessions and the results compared to pedigree relationships where these were available. All of the approaches were able to uniquely fingerprint each of the accessions. The four assays differed in the amount of polymorphism detected. For example, all 13 SSR primers were polymorphic, with an average of 5.7 alleles per primer set, while nearly 54% of the fragments generated using AFLPs were monomorphic. The highest diversity index was observed for AFLPs (0.937) and the lowest for RFLP (0.322). Principal co-ordinate analysis (PCoA) clearly separated the spring types from the winter types using RFLP and AFLP data with the two-row winter types forming an intermediate group. Only a small group of spring types clustered together using SSR data with the two-row and six-row winter varieties more widely dispersed. Direct comparisons between genetic similarity (GS) estimates revealed by each of the assays were measured by a number of approaches. Spearman rank correlation ranked over 70% of the pairwise comparisons between AFLPs and RFLPs in the same order. SSRs had the lowest values when compared to the other three assays. These results are discussed in terms of the choice of appropriate technology for different aspects of germplasm evaluation.  相似文献   

2.
RAPDs, AFLPs and SSRs were compared in terms of their informativeness and efficiency in a study of genetic diversity and relationships among 32 olive cultivars cultivated in Italy and Spain. SSRs presented a higher level of polymorphism and a greater information content, as assessed by the expected heterozygosity, than AFLPs and RAPDs. The lowest values of expected heterozygosity were obtained for AFLPs, which, nevertheless were the most efficient marker system due to their capacity to reveal the highest number of bands per reaction and because of the high values achieved for a considerable number of indexes. All three techniques discriminated the genotypes very effectively, but only SSRs were able to discriminate the cultivars Frantoio and Cellina. The correlation coefficients of similarity were statistically significant for all three marker systems used but were lower for the SSR data than for RAPDs and AFLPs. For all markers a high similarity in dendrogram topologies was obtained although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect some relationships for most of the cultivars according to their geographic diffusion. AMOVA analysis detected greater genetic differentiation among cultivars within each country than it did between the two countries.Communicated by H.F. Linskens  相似文献   

3.
 DNA-based fingerprinting technologies have proven useful in genetic similarity studies. RFLP is still most commonly used in the estimation of genetic diversity in plant species, but the recently developed PCR-based marker techniques, RAPDs, SSRs and AFLPs, are playing an increasingly important role in these investigations. Using a set of 33 maize inbred lines we report on a comparison of techniques to evaluate their informativeness and applicability for the study of genetic diversity. The four assays differed in the amount of polymorphism detected. The information content, measured by the expected heterozygosity and the average number of alleles, was higher for SSRs, while the lowest level of polymorphism was obtained with AFLPs. However, AFLPs were the most efficient marker system because of their capacity to reveal several bands in a single amplification. In fact, the assay efficiency index was more than ten-fold higher for AFLPs compared to the other methods. Except for RAPDs, the genetic similarity trees were highly correlated. SSR and AFLP technologies can replace RFLP marker in genetic similarity studies because of their comparable accuracy in genotyping inbred lines selected by pedigree. Bootstrap analysis revealed that, in the set of lines analysed, the number of markers used was sufficient for a reliable estimation of genetic similarity and for a meaningful comparison of marker technologies. Received: 11 April 1998 / Accepted: 19 May 1998  相似文献   

4.
利用 RFLP、SSR.AFLP和RAPD 4种分子标记方法研究了 15个玉米(Zea mays L.)自交系的遗传多样性,同时对4种标记系统进行比较。在供试材料中筛选到具多态性的RFLP探针酶组合56个,66对SSR引物,20个RAPD引物和9个AFLP引物组合,分别检测到多态性带167、201、87和108条。SSR标记位点的平均多态性信息量(PIC)最大(0.54),AFLP标记位点最小(0.36),但AFLP标记具有最高的多态性检测效率(Ai,32.2)。4种分子标记所得遗传相似系数相关性显著,比较相关系数表明 RAPD可靠性较低。依据 4种分子标记结果将 15个供试自交系划分为塘四平头、旅大红骨、兰卡斯特、瑞德和PN共5个类群,与系谱分析基本一致。认为SSR和RFLP两种分子标记方法适合进行玉米种质遗传多样性的研究。  相似文献   

5.
In order to get an overview on the genetic relatedness of sorghum (Sorghum bicolor) landraces and cultivars grown in low-input conditions of small-scale farming systems, 46 sorghum accessions derived from Southern Africa were evaluated on the basis of amplified fragment length polymorphism (AFLPs), random amplified polymorphic DNAs (RAPDs) and simple sequence repeats (SSRs). By this approach all sorghum accessions were uniquely fingerprinted by all marker systems. Mean genetic similarity was estimated at 0.88 based on RAPDs, 0.85 using AFLPs and 0.31 based on SSRs. In addition to this, genetic distance based on SSR data was estimated at 57 according to a stepwise mutation model (Deltamu-SSR). All UPGMA-clusters showed a good fit to the similarity estimates (AFLPs: r = 0.92; RAPDs: r = 0.88; SSRs: r = 0.87; Deltamu-SSRs: r = 0.85). By UPGMA-clustering two main clusters were built on all marker systems comprising landraces on the one hand and newly developed varieties on the other hand. Further sub-groupings were not unequivocal. Genetic diversity (H, DI) was estimated on a similar level within landraces and breeding varieties. Comparing the three approaches to each other, RAPD and AFLP similarity indices were highly correlated (r = 0.81), while the Spearman's rank correlation coefficient between SSRs and AFLPs was r = 0.57 and r = 0.51 between RAPDs and SSRs. Applying a stepwise mutation model on the SSR data resulted in an intermediate correlation coefficient between Deltamu-SSRs and AFLPs (r = 0.66) and RAPDs ( r = 0.67), respectively, while SSRs and Deltamu-SSRs showed a lower correlation coefficient (r = 0.52). The highest bootstrap probabilities were found using AFLPs (56% on average) while SSR, Deltamu-SSR and RAPD-based similarity estimates had low mean bootstrap probabilities (24%, 27%, 30%, respectively). The coefficient of variation (CV) of the estimated genetic similarity decreased with an increasing number of bands and was lowest using AFLPs.  相似文献   

6.
Genetic diversity, population structure and interrelationships were investigated in eight populations of the common reed, Phragmites australis, in the Po Plain, Italy, by means of amplified fragments length polymorphisms (AFLPs) and random amplified polymorphic DNAs (RAPDs). Patterns of genetic diversity were analysed in relation to size, age and degree of human impact in the wetlands and compared with that of a distant population in Romania. Genetic distances between Po Plain clones and geographically distant clones were measured to determine the geographical extent of the gene pool.  相似文献   

7.
兰属14种植物遗传多样性RAPD及AFLP分析   总被引:9,自引:0,他引:9  
用RAPD和AFIJP技术分析了14种兰属植物的遗传多样性。RAPD筛选出12个随机引物和AFLP3对选择性引物组合均扩增出了丰富的多态性片段。分析结果按UPGMA类平均法进行聚类,所得到的RAPD和AFLP聚类结果基本一致,显示建兰与墨兰,寒兰与峨眉春蕙以及大雪兰与独占春之间的亲缘关系最近。  相似文献   

8.
Díaz V  Muñiz LM  Ferrer E 《Molecular ecology》2001,10(11):2593-2603
Pinus oocarpa is the most widely distributed pine species of Mexico and Central America. The natural populations of Nicaragua have been affected by extensive human activities. As a consequence, their size has been reduced, and there is a serious threat to the development of mature woodland. Knowledge of population structures and the genetic diversity of the species is required for the design of sustainable use and conservation strategies. Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic variation among 10 populations from three geographical regions of Nicaragua. Both markers revealed high levels of diversity in these populations. G(ST) values and analyses of molecular variance (AMOVA) found that most variation was within populations but there is still a significant differentiation between populations indicating that the populations sampled cannot be considered a single panmictic unit. The partitions created by AMOVA also showed that there was little differentiation between populations of different regions, although cluster analyses based on RAPDs and AFLPs indicated a closer relationship among most of the populations from a same geographical region. Management of P. oocarpa in Nicaragua should be aimed to maintain the high degree of genetic variation within individual populations that is still observed even in some of these highly degraded populations.  相似文献   

9.
A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.  相似文献   

10.
Tylophora indica (Burm.f.) Merr (syn. T. asthmatica), is being indiscriminately collected for medicinal use which is not sustainable. Conservation of the species requires information on existing genetic content and its distribution in different populations. In the present study, polymorphism in allozyme and RAPD profiles of five populations were analysed using six enzyme systems and ten random primers. Genetic content in terms of allozymes and RAPDs as revealed by Shannon-Weiner index was more or less same in all the populations. Evenness as calculated from observed diversity (Shannon-Weiner index, H’) and the maximum expected diversity (Hmax) for the allozymes and RAPDs was high for individual populations indicating that the distribution of genetic content was fairly uniform. From the results, it was concluded that collection of few genotypes from geographically distinct locations rather than intensive collection within one or two locations would be representative of the genetic variability present in this species.  相似文献   

11.
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different- colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were sampled. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating independently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once. Received: 3 October 2000 / Accepted: 19 February 2001  相似文献   

12.
Several DNA‐based marker systems are available for genetic fingerprinting of plants but information on their relative usefulness for yam germplasm characterisation is lacking. The efficiency of RAPD, AFLP and SSR markers for the assessment of genetic relationships, and for cultivar identification and discrimination among 45 West and Central African white yam cultivars belonging to 22 morphotypes/cultivar groups was investigated. Dendrograms were produced based on band pattern scores using the UPGMA method. Results showed that each of the three techniques could unequivocably identify each cultivar, but that techniques differed in the mean number of profiles generated per primer (or primer pair) per cultivar, referred to as genotype index (GI). The order of merit based on this criterion in this study was AFLPs (GI = 2.56), SSRs (GI = 0.39) and RAPDs (GI = 0.35). Yam genotypes classified in the same cultivar group based on morphology were often genetically different, emphasising the need for molecular fingerprinting in yam germplasm characterisation. AFLPs showed the highest efficiency in detecting polymorphism and revealed genetic relationships that most closely reflected morphological classification.  相似文献   

13.
In order to study genetic variation among populations of Rhynchosporium secalis, 65 isolates were sampled from the West Asian and North African regions and used for polymerase chain reaction (PCR)‐based DNA marker analyses [namely random amplified polymorphism DNAs (RAPDs) and amplified fragment length polymorphisms (AFLPs)]. The study revealed that genetic diversity among and within populations accounted for 80 and 20%, respectively, of the total genetic diversity, indicating that the local field populations of R. secalis in West Asia and North Africa originated from genetically diverse source populations. Furthermore, high genetic similarity among isolates from the same location suggests that scald populations originated from a local founder population, possibly through rain‐splash‐dispersed conidia.  相似文献   

14.
The application of AFLPs, RAPDs and SSRs to examine genetic relationships in the primary northwestern European cultivated potato gene pool was investigated. Sixteen potato cultivars were genotyped using five AFLP primer combinations, 14 RAPD primers, and 17 database-derived SSR primer pairs. All three approaches successfully discriminated between the 16 cultivars using a minimum of one assay. Similarity matrices produced for each marker type on the basis of Nei and Li coefficients showed low correlations when compared with different statistical tests. Dendrograms were produced from these data for each marker system. The usefulness of each system was examined in terms of number of loci revealed (effective multiplex ratio, or EMR) and the amount of polymorphism detected (diversity index, or DI). AFLPs had the highest EMR, and SSRs the highest DI. A single parameter, marker index (MI), which is the product of DI and EMR, was used to evaluate the overall utility of each marker system. The use of these PCR-based marker systems in potato improvement and statutory applications is discussed.Abbreviations: PCR, polymerase chain reaction; AFLP, amplified fragment length polymorphism; RAPD, randomly amplified polymorphic DNA; DNA, deoxyribonucleic acid; EMR, effective multiplex ratio; DI, diversity index; MI, marker index; RFLP, restriction fragment length polymorphism.  相似文献   

15.
Cedrela balansae C.DC. is a native tree species in Argentina, severely exploited for its timber features. We performed a molecular analysis to understand the genetic diversity and its distribution in eight remaining populations, which are distributed within the species' range in the Argentine Yungas Rainforest. We used two molecular markers: (i) seven SSRs, selected from forty-five SSRs developed for phylogenetically close species belonging to the Meliaceae family and (ii) 382 polymorphic AFLPs. The He was 0.643 and 0.222 for SSRs and AFLPs, respectively. The moderate levels of genetic diversity were related to the limited size of the species' distribution area, the latitudinal position of populations, the impacts of logging and the species' spatial distribution pattern. Genetic differentiation among populations was low for both markers (4.9% and 4.1% for SSRs and AFLPs, respectively). Four genetic clusters homogeneously distributed were distinguished. These observations may relate to the considerable historical gene flow measured (3.71 and 4.47 for SSRs and AFLPs, respectively). To safeguard the currently existing genetic base in the species, we identify four priority populations for conservation. To date only one of these is located in a protected area. Therefore, it is urgent to apply additional conservation measures for the remaining populations.  相似文献   

16.
AFLP and RAPD marker techniques have been used to evaluate and study the diversity and phylogeny of 54 lentil accessions representing six populations of cultivated lentil and its wild relatives. Four AFLP primer combinations revealed 23, 25, 52 and 48 AFLPs respectively, which were used to partition variation within and among Lens taxa. The results of AFLP analysis is compared to previous RAPD analysis of the same material. The two methods provide similar conclusions as far as the phylogeny of Lens is concerned. The AFLP technique detected a much higher level of polymorphyism than the RAPD analysis. The use of 148 AFLPs arising from four primer combinations was able to discriminate between genotypes which could not be distinguished using 88 RAPDs. The level of variation detected within the cultivated lentil with AFLP analysis indicates that it may be a more efficient marker technology than RAPD analysis for the construction of genetic linkage maps between carefully chosen cultivated lentil accessions.  相似文献   

17.
18.
 RAPD markers and agronomic traits were used to determine the genetic relationships among 32 breeding lines of melon belonging to seven varietal types. Most of the breeding lines were Galia and Piel de Sapo genotypes, which are currently being used in breeding programmes to develop new hybrid combinations. A total of 115 polymorphic reliable bands from 43 primers and 24 agronomic traits were scored for genetic distance calculations and cluster analysis. A high concordance between RAPDs and agronomic traits was observed when genetic relationships among lines were assessed. In addition, RAPD data were highly correlated with the pedigree information already known for the lines and revealed the existence of two clusters for each varietal type that comprised the lines sharing similar agronomic features. These groupings were consistent with the development of breeding programmes trying to generate two separate sets of parental lines for hybrid production. Nevertheless, the performance of certain hybrids indicated that RAPDs were more suitable markers than agronomic traits in predicting genetic distance among the breeding lines analysed. The employment of RAPDs as molecular markers both in germplasm management and improvement, as well as in the selection of parental lines for the development of new hybrid combinations, is discussed. Received: 25 July 1997 / Accepted: 6 October 1997  相似文献   

19.
 The polyploid Salix albaSalix fragilis hybrid complex is rather difficult to study when using only morphological characters. Most of the characters have a low diagnostic value for unambiguously identifying the hybrids, introgression patterns and population structures. Morphology and molecular variation determined with random amplified polymorphic DNAs (RAPDs) were investigated in a set of staminate and pistillate willows from Belgium. A thorough screening of possible RAPD markers was done to select homologous amplification products. The selected amplified products proved to be useful in a principal coordinate analysis for the identification of individuals from a morphological continuum comprising presumed pure species and introgressants. The RAPD based identity of the individuals or clones was checked against those based on morphological characters. A correspondence analysis indicated that all pubescence related characters were associated but separated from the size related characters. The RAPDs also revealed that the S. fragilis genotypes mainly consisted of staminate individuals whereas most of the pistillate trees belonged to the S. alba genotype cluster. It was suggested that both species have kept their gene pools well separated and that morphologically intermediate plants are not necessarily genetically intermediate. Received August 31, 1999 Accepted December 12, 2000  相似文献   

20.
 Genetic diversity and relationships of 23 cultivated and wild Amaranthus species were examined using both isozyme and RAPD markers. A total of 30 loci encoding 15 enzymes were resolved, and all were polymorphic at the interspecific level. High levels of inter-accessional genetic diversity were found within species, but genetic uniformity was observed within most accessions. In the cultivated grain amaranths (A. caudatus, A. cruentus, and A. hypochondriacus), the mean value of HT was 0.094, HS was 0.003, and GST was 0.977 at the species level. The corresponding values in their putative wild progenitors (A. hybridus, A. powellii, and A. quitensis) were 0.135, 0.004, and 0.963, respectively. More than 600 RAPD fragments were generated with 27 arbitrary 10-base primers. On average, 39.9% of the RAPD fragments were polymorphic among accessions within each crop species; a similar level of polymorphism (42.8%) was present in the putative progenitors, but much higher levels of polymorphism were found in vegetable (51%) and other wild species (69.5%). The evolutionary relationships between grain amaranths and their putative ancestors were investigated, and both the RAPD and isozyme data sets supported a monophyletic origin of grain amaranths, with A. hybridus as the common ancestor. A complementary approach using information from both isozymes and RAPDs was shown to generate more accurate estimates of genetic diversity, and of relationships within and among crop species and their wild relatives, than either data set alone. Received: 13 March 1997/Accepted: 6 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号