首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Zn-finger proteins, TFIIIA (a constituent of 7S RNP particles) and p43 (a constituent of 42S RNP particles), were detected in ovary extracts of juvenile Xenopus laevis females by in vitro binding of radiolabeled divalent metals. Proteins fractionated by SDS-PAGE (sodium dodecylsulfate-polyacrylamide gel electrophoresis) were transferred by Western blotting onto nitrocellulose membranes, probed with 65Zn2+, 63Ni2+, or 109Cd2+, and visualized by autoradiography. Detection limits for TFIIIA were approx 0.07 micrograms/well by 109Cd(2+)-probing, 0.13 micrograms/well by 65Zn(2+)-probing, and 0.26 mu/well by 63Ni(2+)-probing. Protein p43 was more clearly visualized by probing with 63Ni2+ than with 65Zn2+ or 109Cd2+. After purified TFIIIA was cleaved with cyanogen bromide, 65Zn2+, 109Cd2+, and 63Ni2+ distinctly labeled the 22 kDa middle fragment; 65Zn2+ and 109Cd2+ also labeled the 11 kDa N-terminal fragment, but did not label the 13 kDa C-terminal fragment. These results are consistent with the notion that the radioligands were bound to finger-loop domains of TFIIIA, which occur in the middle and N-terminal fragments. Based on the abilities of nonradioactive metal ions to compete with 65Zn2+ for binding to TFIIIA on Western blots, the relative affinities of the metals for TFIIIA were ranked as follows: Zn2+ = Cu2+ greater than or equal to Hg2+ greater than Cd2+ greater than Co2+ greater than or equal to Ni2+. Even at a 1000-fold molar excess, Mn2+ did not compete with 65Zn2+ for binding to TFIIIA. Probing Western blots with the radiolabeled metal ions greatly facilitates the detection, isolation, and quantitation of TFIIIA and p43.  相似文献   

2.
The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.  相似文献   

3.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

4.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
F D Coffman  M F Dunn 《Biochemistry》1988,27(16):6179-6187
An insulin hexamer containing one B10-bound Co(III) ion and one unoccupied B10 site has been synthesized. The properties of the monosubstituted hexamer show that occupancy of only one B10 site by Co3+ is sufficient to stabilize the hexameric form under the conditions of pH and concentration used in these studies. The experimentally determined, second-order rate constants for the binding of Zn2+ and Co2+ to the unoccupied B10 site are consistent with literature rate constants for the rate of association of these divalent metal ions with similar small molecule ligands. These findings indicate that the rate-limiting steps for Zn2+ and Co2+ binding involve the removal of the first aqua ligand. The rate constant for the binding of Cd2+ is significantly lower than the literature values for small molecule chelators, which suggests that some other protein-related process is rate-limiting for Cd2+ binding to the unoccupied, preformed B10 site. The kinetics of the assembly of insulin in the presence of limiting metal ion provides strong evidence indicating that the B13 site of the tetramer species can bind Zn2+, Cd2+, or Ca2+ prior to hexamer formation and that such binding assists hexamer formation. Both the tetramer and the hexamer B13 sites were found to exhibit similar affinities for Zn2+ and Cd2+ (Kd congruent to 9 microM), whereas the tetramer B13 sites bind Ca2+ much more weakly (Kd congruent to 1 mM for tetramer vs 83 microM for hexamer). The second-order rate constants estimated for the association of Zn2+ and Cd2+ to the tetrameric site indicate that the loss of the first inner-sphere aqua ligand is the rate-limiting step for binding.  相似文献   

6.
Coupling factor, isolated from lettuce chloroplasts, contained several binding sites for Mn2+ ions. Three of these sites showed strong cooperative interactions having a Hill coefficient of 2.9 +/- 0.20 and a Kd of 14.7 +/- 0.44 microM. Three additional non-interacting Mn2+-binding sites were found with a Kd of 46.7 +/- 2.3 microM. Chemical modification with naphthylglyoxal of 1 arginyl residue/chloroplast coupling factor 1, which inhibited ATPase activity, inhibited the cooperativity among the sites but did not prevent Mn2+ binding to the enzyme. It is suggested that the cooperative interaction among the Mn2+-binding sites is an expression of the interaction among the active sites of the enzyme which is required for catalysis.  相似文献   

7.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

8.
Beta-Adrenergic receptors were studied in intact cells of chick, rat and mouse embryo brain in primary cultures, by the specific binding of [3H]dihydro-L-alprenolol ([3H]DHA). The results were compared to the receptor binding of broken cell preparations derived from the cell cultures or from the forebrain tissues used for the preparation of the cultures. Detailed analysis of [3H]DHA binding to living chick brain cells revealed a high-affinity, stereoselective, beta-adrenergic-type binding site. Equilibrium measurements indicated the apparent positive cooperativity of the binding reaction. By direct fitting of the Hill equation to the measured data, values of Bmax = 12.01 fmol/10(6) cells (7200 sites/cell), Kd = 60.23 pM and the Hill coefficient n = 2.78 were found. The apparent cooperative character of the binding was confirmed by the kinetics of competition with L-alprenolol, resulting in maximum curves at low ligand concentrations. The rate constants of the binding reaction were estimated as k+ = 8.31 X 10(7) M-1 X min-1 and k- = 0.28 min-1 from the association results, and k- = 0.24 min-1 from the dissociation data. The association kinetics supported the cooperativity of the binding, providing a Hill coefficient n = 1.76; Kd, as (k-/k+)1/n was found to be 101 pM. Analysis of the equilibrium binding of [3H]DHA to rat and mouse living brain cells resulted in values of Bmax = 13.04 fmol/10(6) cells (7800 sites/cell), Kd = 43.85 pM and n = 2.52, and Bmax = 8.08 fmol/10(6) cells (4800 sites/cell), Kd = 46.70 pM and n = 1.63, respectively, confirming the apparent cooperativity of the beta-receptor in mammalian objects, too. The [3H]DHA equilibrium binding to broken cell preparations of either chick, rat or mouse brain cultures or forebrain tissues was found to be non-cooperative, with a Hill coefficient n = 1, Kd in the range 1-2 nM, and a Bmax of 10(3) - 10(4) sites/cell. Our findings demonstrate that cell disruption causes marked changes in the kinetics of the beta-receptor binding and in the affinity of the binding site, although the number of receptors remains unchanged.  相似文献   

9.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
In these experiments the effect of different concentrations of calcium on the specific activity of isolated Na-K-ATPase was studied. The result of these investigations showed that calcium at 10(6) and 10(7) M stimulated the Na-K-ATPase activity. These studies also show that at higher calcium concentrations (10(5)-10(3)M), the activity of the enzyme is inhibited. The results from calcium binding to isolated membranes, rich in Na-K-ATPase, strongly suggest the existence of a low-affinity binding site which exhibits a large positive cooperativity. Kd = 2.8 x 10(5) +/- 0.4 x 10(5) M and Hill coefficient of 2.9 +/- 0.2. The calcium concentration (1.9 x 10(5) M sufficient to produce significant (24%) inhibition of the Na-K-ATPase is approximately equal to the Kd observed for calcium binding.  相似文献   

12.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

13.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

14.
Initial rate kinetics of polysaccharide formation indicate that Zn2+, Ni2+, and Co2+ inhibit dextransucrase [sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5] by binding to two types of metal ion sites. One type consists of a single site and has a low apparent affinity for Ca2+. At the remaining site(s), Ca2+ has a much higher apparent affinity than Zn2+, Ni2+, or Co2+, and prevents inhibition by these metal ions. These findings are consistent with a two-site model previously proposed from studies with Ca2+ and EDTA. Initial rate kinetics also show that Tris is competitive with sucrose, but that, unlike Zn2+, Tris does not bind with significant affinity to a second site. This argues that there is a site which is both the sucrose binding site and a general cation site.  相似文献   

15.
When activated, factor XII (FXII) has been shown to play a role in a series of proteolytic cascades including systems as the fibrinolytic, the coagulation, the kallikrein-kinin and the complement. How FXII is activated in vivo remains poorly understood as the concentration and density of surface bound negative charges known to trigger the activation in vitro is far from sufficient in vivo. Specific binding of FXII to cellular receptors in the blood stream may, however, solve this problem which may be a question of inter molecular vicinity enhanced by binding to any surface. Here we report that the Zn(2+)-dependent binding of FXII to endothelial cells is rapid, saturable, specific and cooperative. Each endothelial cell from the human umbilical veins was found to bind (417 +/- 202) x 10(3) molecules of FXII with a Kd of (65 +/- 23) nM and a Hill coefficient of 2.1. The binding was inhibited by alpha-FXIIa but not by beta-FXIIa. The Kd for binding alpha-FXIIa was (50 +/- 27) nM. The rate of association was found to be 1.9 x 10(5) M(-1). min(-1). A confirmed inhibition by HK increased the Kd without affecting the maximal number of binding sites and the Hill coefficient. The concentration of HK in serum did not prevent binding of FXII/FXIIa to cells incubated with serum supplemented with Zn2+. The optimal concentration of Zn(2+) was 15 microM for binding factor XII/FXIIa whether purified or in serum.  相似文献   

16.
Binding of spermidine to transfer ribonucleic acid   总被引:1,自引:0,他引:1  
M E McMahon  V A Erdmann 《Biochemistry》1982,21(21):5280-5288
The binding of spermidine to yeast tRNAPhe and Escherichia coli tRNAGlu2 at low and high ionic strength was studied by equilibrium dialysis. Once corrected for the expected Donnan effect, the binding at low ionic strength obeys the simple relationship of equivalent binding sites, and cooperative binding of spermidine to tRNA could not be detected. At low ionic strength (0.013 M Na+ ion), tRNAPhe (yeast) has 13.9 +/- 2.3 strong spermidine binding sites per molecule with Kd = 1.39 X 10(-6) M and a few weak spermidine binding sites which were inaccessible to experimentation; tRNAGlu2 (E. coli) has 14.8 +/- 1.6 strong spermidine binding sites and 4.0 +/- 0.1 weak spermidine binding sites with Kd = 1.4 X 10(-6) M and Kd = 1.23 X 10(-4) M, respectively. At high ionic strength (0.12 M monovalent cation) and 0.01 M Mg2+, tRNAPhe (yeast) has approximately 13 strong spermidine binding sites with an apparent Kd = 3.4 X 10(-3) M while the dimeric complex tRNAPhe X tRNAGlu2 has 10.4 +/- 1.2 strong spermidine binding sites per monomer with an apparent Kd = 2.0 X 10(-3) M. In the presence of increasing Na+ ion or K+ ion concentration, spermidine binding data do not fit a model for competitive binding to tRNA by monovalent cations. Rather, analysis of binding data by the Debye-Hückel approximation results in a good fit of experimental data, indicating that monovalent cations form a counterion atmosphere about tRNA, thus decreasing electrostatic interactions. On the basis of equilibrium binding analyses, it is proposed that the binding of spermidine to tRNA occurs predominantly by electrostatic forces.  相似文献   

17.
Studies on the zinc binding site to the serum thymic factor   总被引:3,自引:0,他引:3  
Gel filtration studies of 65Zn2+ binding to thymulin show that the nonapeptide can strongly bind one zinc metal ion. At pH 7.5, thymulin binds one zinc ion with an apparent affinity constant Kd of 5 +/- 2 X 10(-7) M. Binding is pH dependent. No binding is observed below pH 6.0. Ga3+, Al3+, Mn2+ and Cu2+ can compete with the binding of Zn2+ at pH 7.5. A good correlation between the competition potencies of metal ions used and the extent of biological activity of thymulin in the presence of these metal ions in an in vitro rosette assay is observed. Structural analogs of thymulin and non-thymulin-related peptides were used in a gel filtration technique to tentatively define the nature of amino acids present in the Zn2+-binding site of thymulin.  相似文献   

18.
Na Feng  Jiuru Lu  Yunhua He  Jianxiu Du 《Luminescence》2005,20(4-5):266-270
A new chemiluminescence (CL) reaction was observed when Ni2+, Mg2+, Cd2+ or Zn2+ was injected into the reaction mixture after the finish of the CL reaction of alkaline luminol and potassium ferricyanide. This reaction is described as a post-chemiluminescence (PCL) reaction. The possible mechanism for the PCL was proposed based on studies of the CL kinetic characteristic and the CL spectra. The experimental conditions of the CL reactions were optimized and the feasibility of using the reaction to analyse these metal ions was evaluated. The PCL reaction method operates in the ranges: 1 x 10(-7)-8 x 10(-6) g/L Ni2+; 3 x 10(-6)-2 x 10(-4) g/L Mg2+; 8 x 10(-7)-1 x 10(-4) g/L Cd2+; and 2 x 10(-4)-2 x 10(-3) g/L Zn2+, with detection limits of 4 x 10(-8) g/mL, 1 x 10(-6) g/mL, 3 x 10(-7) g/mL, 8 x 10(-5) g/mL, respectively.  相似文献   

19.
A novel iron-binding protein from rat liver homogenates was purified 1,800-fold with a 5.7% yield, to apparent homogeneity. The molecular weight of the protein was estimated to be 16,000, by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified protein exhibited 0.43 mol of iron binding per mol of protein with a dissociation constant (Kd) of 3.5 x 10(-6) M. Al3+ inhibited the iron-binding and the binding was also slightly inhibited by Ni2+. Other divalent metal ions such as Cu2+, Zn2+ and Mn2+ were without effect. Immunoblot analysis of the iron-binding protein revealed that the protein is located mainly in microsomes. This newly identified iron-binding protein may be involved in intracellular transport of iron.  相似文献   

20.
The binding of bivalent metal ions Cu2+, Zn2+, Ca2+, Mg2+ to low-density lipoproteins (LDL) was investigated by the ESR technique. The monitoring of ESR spectra of paramagnetic Mn2+ ions in the presence of above-listed cations made it possible to evaluate the dissociation constants of their complexes with LDL. The effective dissociation constant of the complex Mn(2+)-LDL used for calculations was KD = (1.1 +/- 0.4) x 10(-4) M according to literature data. The investigated cations may be classified into two groups: 1) low dissociation constants were characteristic for Cu2+ ions [KD = (1.3 +/- 0.5) x 10(-4) M], which demonstrated a high oxidative ability, and for Zn2+ [KD = (0.95 +/- 0.45) x 10(-4) M] and Mn2+ ions, which could strongly influence the copper-induced LDL oxidation; 2) Ca2+ and Mg2+ were characterized by higher values of KD [(6 +/- 1) x 10(-4) M and (7.5 +/- 1.5) x 10(-4) M, accordingly] and slightly affected the Cu(2+)-induced oxidation of LDL. The results of the present work reinforced our earlier conjecture that cations may influence the process of lipid peroxidation, binding only to particular binding sites on the surface of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号