首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proexosite I on prothrombin has been implicated in providing a recognition site for factor Va within prothrombinase. To examine whether hirudin-like sequences (659-698) on the cofactor contribute to this interaction, we expressed and purified two-chain FVa derivatives that were intracellularly truncated at the C terminus of the heavy chain: FVa709 (des710-1545), FVa699 (des700-1545), FVa(692 (des693-1545), FVa678 (des679-1545), and FVa658 (des659-1545). We found that FVa709, FVa699, FVa692, and FVa678 exhibited specific clotting activities that were comparable with plasma-derived and recombinant FVa. Additionally, kinetic studies using prothrombin revealed that the Km and kcat values for these derivatives were unaltered. Fluorescent measurements and chromatography studies indicated that FVa709, FVa699, FVa692, and FVa678 bound to FXa membranes and thrombin-agarose in a manner that was comparable with the wild-type cofactors. In contrast, FVa658 had an approximately 1% clotting activity and reduced affinity for FXa membranes (approximately 20-fold) and did not bind to thrombin-agarose. Surprisingly, however, FVa(658) exhibited essentially normal kinetic parameters for prothrombin when the variant was fully saturated with FXa membranes. Overall our results are consistent with the interpretation that any possible binding interactions between prothrombin and the C-terminal region of the FVa heavy chain do not contribute in a detectable way to the enhanced function of prothrombinase.  相似文献   

2.
Zymogens of the chymotrypsin-like serine protease family are converted to the protease state following insertion of a newly formed, highly conserved N terminus. This transition is accompanied by active site formation and ordering of several surface loops in the catalytic domain. Here we show that disruption of this transition in factor X through mutagenesis (FXa(I16L) and FXa(V17A)) not only alters active site function, but also significantly impairs Na(+) and factor Va binding. Active site binding was improved in the presence of high NaCl or with saturating amounts of factor Va membranes, suggesting that allosteric linkage exists between these sites. In line with this, irreversible stabilization of FXa(I16L) with Glu-Gly-Arg-chloromethyl ketone fully rescued FVa binding. Furthermore, the K(m) for prothrombin conversion with the factor Xa variants assembled into prothrombinase was unaltered, whereas the k(cat) was modestly reduced (3- to 4-fold). These findings show that intramolecular activation of factor X following the zymogen to protease transition not only drives catalytic site activation but also contributes to the formation of the Na(+) and factor Va binding sites. This structural plasticity of the catalytic domain plays a key role in the regulation of exosite expression and prothrombinase assembly.  相似文献   

3.
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.  相似文献   

4.
Activated Factor V (FVa) functions as a membrane-bound cofactor to the enzyme Factor Xa (FXa) in the conversion of prothrombin to thrombin, increasing the catalytic efficiency of FXa by several orders of magnitude. To map regions on FVa that are important for binding of FXa, site-directed mutagenesis resulting in novel potential glycosylation sites on FV was used as strategy. The consensus sequence for N-linked glycosylation was introduced at sites, which according to a computer model of the A domains of FVa, were located at the surface of FV. In total, thirteen different regions on the FVa surface were probed, including sites that are homologous to FIXa-binding sites on FVIIIa. The interaction between the FVa variants and FXa and prothrombin were studied in a functional prothrombin activation assay, as well as in a direct binding assay between FVa and FXa. In both assays, the four mutants carrying a carbohydrate side chain at positions 467, 511, 652, or 1683 displayed attenuated FXa binding, whereas the prothrombin affinity was unaffected. The affinity toward FXa could be restored when the mutants were expressed in the presence of tunicamycin to inhibit glycosylation, indicating the lost FXa affinity to be caused by the added carbohydrates. The results suggested regions surrounding residues 467, 511, 652, and 1683 in FVa to be important for FXa binding. This indicates that the enzyme:cofactor assembly of the prothrombinase and the tenase complexes are homologous and provide a useful platform for further investigation of specific structural elements involved in the FVa.FXa complex assembly.  相似文献   

5.
Inactivation due to cleavage of Factor Va (FVa) at Arg 506 by activated protein C (APC) helps to downregulate blood coagulation. To identify potential functional roles of amino acids near Arg 506, synthetic overlapping pentadecapeptides comprising FVa heavy chain residues 481-525 were tested for their ability to inhibit prothrombin activation by prothrombinase complexes [Factor Xa (FXa):FVa:phospholipids:Ca2+]. The most potent inhibition was observed for peptide VP493 (residues 493-506), with 50% inhibition at 2.5 microM. VP493 also inhibited FXa in plasma in FXa-1-stage clotting assays by 50% at 3 microM. When the C-terminal carboxamide group of VP493 was replaced by a carboxyl group, most prothrombinase inhibitory activity was lost. VP493 preincubated with FXa inhibited prothrombinase with a pattern of mixed inhibition. Homologous peptides from Factor VIII sequences did not inhibit prothrombinase. Affinity-purified antibodies to VP493 inhibited prothrombinase activity and prolonged FXa-1-stage clotting times. VP493 also blocked the ability of protein S to inhibit prothrombinase independently of APC. Immobilized VP493 bound specifically with similar affinity to both FXa and protein S (Kd approximately 40 nM), but did not measurably bind prothrombin or APC. These studies suggest that FVa residues 493-506 contribute to binding sites for both FXa and protein S, providing a rationale for the ability of protein S to negate the protective effect of FXa toward APC cleavage of FVa. Possible loss of this FVa binding site for FXa due to cleavage at Arg 506 by APC may help explain why this cleavage causes 40% decrease in FVa activity and facilitates inactivation of FVa.  相似文献   

6.
To investigate the relationship between the individual thrombin cleavages in factor V (FV) and the generation of activated factor X (FXa) cofactor activity, recombinant FV mutants having the cleavage sites eliminated separately or in combination were used. After thrombin incubation, the ability of the FV variants to bind FXa and support prothrombin activation was tested. The interaction between FVa and FXa on the surface of phospholipid was investigated with a direct binding assay as well as in a functional prothrombin activation assay. FV mutated at all cleavage sites functioned poorly as FXa cofactor in prothrombin activation, the apparent K(d) for FXa being approximately 10 nm. Fully activated wild type FVa, yielded an apparent K(d) of around 0.2 nm. The Arg(709) and Arg(1018) cleavages occurred at low thrombin concentrations and decreased the K(d) for FXa binding 5- and 3-fold, respectively. The Arg(1545) cleavage, being less sensitive to thrombin, decreased the K(d) for FXa binding approximately 20-fold. The K(m) for prothrombin was the same for all FV variants, demonstrating B-domain dissociation to result in exposure of binding site for FXa but not for prothrombin. In conclusion, we demonstrate FV activation to be associated with the stepwise release of the B-domain, which results in a gradual exposure of the FXa-binding site.  相似文献   

7.
Activated coagulation factor V (FVa) is a cofactor of activated factor X (FXa) in prothrombin activation. FVa is composed of a light chain (LC) and a heavy chain (HC) that are noncovalently associated in a calcium-dependent manner. We constructed a recombinant FV Asp111Asn/Asp112Asn mutant (rFV-NN) to abolish calcium binding to a potential calcium-binding site in FVa in order to study the specific role of these residues in the expression of FVa activity. Whereas thrombin-activated recombinant FV wild type (rFV-wt) presented with stable FVa activity, incubation of rFV-NN with thrombin resulted in a temporary increase in FVa activity, which was rapidly lost upon prolonged incubation. Loss of FVa activity was most likely due to dissociation of HC and LC since, upon chromatography of rFVa-NN on a SP-Sepharose column, the HC did not bind significantly to the resin whereas the LC bound and could be eluted at high ionic strength. In contrast, rFVa-wt adhered to the column, and both the HC and LC coeluted at high ionic strength. In the presence of phospholipid vesicles, the loss of rFVa-NN activity was partially prevented by FXa, active site inhibited FXa, and prothombin in a dose-dependent manner. We conclude that the introduced amino acid substitutions result in a loss of the high-affinity (calcium-dependent) interaction of the HC and LC of FVa. We propose that the introduced substitutions disrupt the calcium-binding site in FV, thereby yielding a FV molecule that rapidly loses activity following thrombin-catalyzed activation most likely via dissociation of the HC and LC.  相似文献   

8.
Rezaie AR  He X 《Biochemistry》2000,39(7):1817-1825
The nature of residue 225 on a consensus loop in serine proteases determines whether a protease can bind Na(+). Serine proteases with a Pro at this position are unable to bind Na(+), but those with a Tyr or Phe can bind Na(+). Factor Xa (FXa), the serine protease of the prothrombinase complex, contains a Tyr at this position. Na(+) is also known to stimulate the amidolytic activity of FXa toward cleavage of small synthetic substrates, but the role of Na(+) in the prothrombinase complex has not been investigated. In this study, we engineered a Gla-domainless form of FX (GDFX) in which residue Tyr(225) was replaced with a Pro. We found that Na(+) stimulated the cleavage rate of chromogenic substrates by FXa or GDFXa approximately 8-24-fold with apparent dissociation constants [K(d(app))] of 37 and 182 mM in the presence and absence of Ca(2+), respectively. In contrast, Na(+) minimally affected the cleavage rate of these substrates by the mutant, and no K(d(app)) for Na(+) binding to the mutant could be estimated. Unlike the wild-type enzyme, the reactivity of the mutant with antithrombin was independent of Na(+) and impaired approximately 32-fold. Ca(2+) improved the reactivity of the mutant with antithrombin approximately 5-fold. Affinity of the mutant for binding to factor Va was weakened and its ability to activate prothrombin was severely impaired. Further studies with the wild-type prothrombinase complex revealed that FXa binds to factor Va with a similar K(d(app)) of 1. 1-1.8 nM in the presence of Na(+), K(+), Li(+), Ch(+), and Tris(+) and that the catalytic efficiency of prothrombinase is enhanced less than 1.5-fold by the specific effect of Na(+) in the reaction buffer. These results suggest that (1) the loop including residue 225 (225-loop) is a Na(+) binding site in FXa, (2) the Na(+)- and Ca(2+)-binding loops of FXa are allosterically linked, and (3) the Tyr conformer of the 225-loop is critical for factor Xa function; however, both Na(+)-bound and Na(+)-free forms of factor Xa in the prothrombinase complex can efficiently activate prothrombin.  相似文献   

9.
The factor Va (FVa) inactivation by activated protein C (APC), mediated by cleavages at Arg306 and Arg506 in FVa, is inhibited by both factor Xa (FXa) and prothrombin. Although FXa is known to specifically inhibit the Arg506 cleavage, the effect of prothrombin has not been confined to one cleavage site. We used recombinant FV variants, FV:R506Q/R679Q and FV:R306Q/R679Q, to investigate the effect of prothrombin on the individual cleavage sites. The APC-mediated FVa inhibition was monitored by a prothrombinase-based FVa assay, and apparent first order rate constants were calculated for each of the cleavage sites both in the presence and absence of prothrombin. Prothrombin impaired cleavages at both Arg306 and Arg506 and the inhibition correlated with a delayed appearance of proteolytic products on Western blots. Almost complete inhibition was obtained at around 3 microm prothrombin, whereas half-maximal inhibition was obtained at 0.7 microm prothrombin. After cleavage of prothrombin by thrombin, the inhibitory activity was lost. The inhibitory effect of prothrombin on APC-mediated inhibition of FVa was seen both in the presence and absence of protein S, but in particular for the Arg306 sites, it was more pronounced in the presence of protein S. Thus, prothrombin inhibition of APC inactivation of FVa appears to be due to both impaired APC function and decreased APC cofactor function of protein S. In conclusion, FVa, being part of the prothrombinase complex, is protected from APC by both FXa and prothrombin. Release of products of prothrombin activation from the prothrombinase complex would alleviate the protection, allowing APC-mediated inactivation of FVa.  相似文献   

10.
The serine protease domain of factor Xa (FXa) contains a sodium as well as a calcium-binding site. Here, we investigated the functional significance of these two cation-binding sites and their thermodynamic links to the S1 site. Kinetic data reveal that Na(+) binds to the substrate bound FXa with K(d) approximately 39 mm in the absence and approximately 9.5 mm in the presence of Ca(2+). Sodium-bound FXa (sodium-Xa) has approximately 18-fold increased catalytic efficiency ( approximately 4.5-fold decrease in K(m) and approximately 4-fold increase in k(cat)) in hydrolyzing S-2222 (benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide), and Ca(2+) further increases this k(cat) approximately 1.4-fold. Ca(2+) binds to the protease domain of substrate bound FXa with K(d) approximately 705 microm in the absence and approximately 175 microm in the presence of Na(+). Ca(2+) binding to the protease domain of FXa (Xa-calcium) has no effect on the K(m) but increases the k(cat) approximately 4-fold in hydrolyzing S-2222, and Na(+) further increases this k(cat) approximately 1.4-fold. In agreement with the K(m) data, sodium-Xa has approximately 5-fold increased affinity in its interaction with p-aminobenzamidine (S1 site probe) and approximately 4-fold increased rate in binding to the two-domain tissue factor pathway inhibitor; Ca(2+) (+/-Na(+)) has no effect on these interactions. Antithrombin binds to Xa-calcium with a approximately 4-fold faster rate, to sodium-Xa with a approximately 24-fold faster rate and to sodium-Xa-calcium with a approximately 28-fold faster rate. Thus, Ca(2+) and Na(+) together increase the catalytic efficiency of FXa approximately 28-fold. Na(+) enhances Ca(2+) binding, and Ca(2+) enhances Na(+) binding. Further, Na(+) enhances S1 site occupancy, and S1 site occupancy enhances Na(+) binding. Therefore, Na(+) site is thermodynamically linked to the S1 site as well as to the protease domain Ca(2+) site, whereas Ca(2+) site is only linked to the Na(+) site. The significance of these findings is that during physiologic coagulation, most of the FXa formed will exist as sodium-Xa-calcium, which has maximum biologic activity.  相似文献   

11.
Rezaie AR 《Biochemistry》2004,43(12):3368-3375
Recombinant tick anticoagulant peptide (rTAP) is a competitive slow- and tight-binding inhibitor of factor Xa (FXa) with a reported equilibrium dissociation constant (K(I)) of approximately 0.2 nM. The inhibitory characteristics and the high selectivity of rTAP for FXa are believed to arise from the ability of the inhibitor to specifically interact with the residues of both the active site as well as those remote from the active site pocket of the protease. To localize the rTAP-interactive sites on FXa, the kinetics of inhibition of wild-type and 18 different mutants of recombinant FXa by the inhibitor were studied by either a discontinuous assay method employing the tight-binding quadratic equation or a continuous assay method employing the slow-binding kinetic approach. It was discovered that K(I) values for the interaction of rTAP with four FXa mutants (Tyr(99) --> Thr, Phe(174) --> Asn, Arg(143) --> Ala, and a Na(+)-binding loop mutant in which residues 220-225 of FXa were replaced with the corresponding residues of thrombin) were elevated by 2-3 orders of magnitude for each mutant. Further studies revealed that the characteristic slow type of inhibition by rTAP was also eliminated for the mutants. These findings suggest that the interaction of rTAP with the P2-binding pocket, the autolysis loop, and the Na(+)-binding loop is primarily responsible for its high specificity of FXa inhibition by a slow- and tight-binding mechanism.  相似文献   

12.
Procoagulant factor Va (FVa) is inactivated via limited proteolysis at three Arg residues in the A2 domain by the anticoagulant serine protease, activated protein C (APC). Cleavage by APC at Arg306 in FVa causes dissociation of the A2 domain from the heterotrimeric A1:A2:A3 structure and complete loss of procoagulant activity. To help distinguish inactivation mechanisms involving A2 domain dissociation from inactivation mechanisms involving unfavorable changes in factor Xa (FXa) affinity, we used our FVa homology model to engineer recombinant FVa mutants containing an interdomain disulfide bond (Cys609-Cys1691) between the A2 and A3 domains (A2-SS-A3 mutants) in addition to cleavage site mutations, Arg506Gln and Arg679Gln. SDS-PAGE analysis showed that the disulfide bond in A2-SS-A3 mutants prevented dissociation of the A2 domain. In the absence of A2 domain dissociation from the A1:A2:A3 trimer, APC cleavage at Arg306 alone caused a sevenfold decrease in affinity for FXa, whereas APC cleavages at Arg306, Arg506, and Arg679 caused a 70-fold decrease in affinity for FXa and a 10-fold decrease in the k(cat) of the prothrombinase complex for prothrombin without any effect on the apparent K(m) for prothrombin. Therefore, for FVa inactivation by APC, dissociation of the A2 domain may provide only a modest final step, whereas the critical events are the cleavages at Arg506 and Arg306, which effectively inactivate FVa before A2 dissociation can take place. Nonetheless, for FVa Leiden (Gln506-FVa) inactivation by APC, A2 domain dissociation may become mechanistically important, depending on the ambient FXa concentration.  相似文献   

13.
Zhang D  Kovach IM 《Biochemistry》2006,45(47):14175-14182
Kinetic solvent isotope effects (KSIEs) for the factor Xa (FXa)-catalyzed activation of prothrombin in the presence and absence of factor Va (FVa) and 5.0 x 10(-5) M phospholipid vesicles are slightly inverse, 0.82-0.93, when substrate concentrations are at 0.2 Km. This is consistent with the rate-determining association of the enzyme-prothrombin assembly, rather than the rate-limiting chemical transformation. FVa is known to effect a major conformational change to expose the first scissile bond in prothrombin, which is the likely event triggering a major solvent rearrangement. At prothrombin concentrations > 5 Km, the KSIE is 1.6 +/- 0.3, when FXa is in a 1:1 ratio with FVa but becomes increasingly inverse, 0.30 +/- 0.05 and 0.19 +/- 0.04, when FXa/FVa is 1:4, with an increasing FXa and substrate concentration. The rate-determining step changes with the conditions, but the chemical step is not limiting under any circumstance. This corroborates the proposed predominance of the meizothrombin pathway when FXa is well-saturated with the prothrombin complex. In contrast, the FXa-catalyzed hydrolysis of N-alpha-Z-D-Arg-Gly-Arg-pNA.2HCl (S-2765) and H-D-Ile-L-Pro-L-Arg-pNA.HCl (S-2288) is most consistent with two-proton bridges forming at the transition state between Ser195 OgammaH and His57 N(epsilon)2 and His57 Ndelta1 and Asp102 COObeta- at the active site, with transition-state fractionation factors of phi1 = phi2 = 0.57 +/- 0.07 and phiS = 0.78 +/- 0.16 for solvent rearrangement for S-2765 and phi1 = phi2 = 0.674 +/- 0.001 for S-2288 under enzyme saturation with the substrate at pH 8.40 and 25.0 +/- 0.1 degrees C. The rate-determining step(s) in these reactions is most likely the cleavage of the C-N bond and departure of the leaving group.  相似文献   

14.
Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ~55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ~5,000- and ~80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ~85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding.  相似文献   

15.
Serine 525 of human prothrombin was mutated to cysteine and covalently labeled with fluorescein to make II(S525C)-fluorescein. Kinetics of cleavage of this derivative by prothrombinase are identical to those of wild-type prothrombin. Cleavage is coincident with a 50% increase in fluorescence intensity and the product is catalytically inactive. Thus, it allows convenient monitoring of prothrombin activation without generating active thrombin. The kinetics of inhibition of factor Xa (FXa) by antithrombin (AT) and AT-heparin were measured by monitoring activation of II(S525C)-fluorescein and the hydrolysis of the chromogenic substrate S2222 in the presence of AT. With S2222 as the substrate the rate constant for inhibition of FXa, Ca(2+), and unilamellar vesicles of phosphatidylcholine and phosphatidylserine (75:25) (PCPS) vesicles by AT was 3.51 x 10(3) m(-1) s(-1); when factor Va (FVa) was included the rate constant was 1.55 x 10(3) m(-1) s(-1). In the absence of FVa, II(S525C)-fluorescein had no effect on inhibition. When II(S525C)-fluorescein was the substrate, however, FVa at saturating concentrations profoundly protected FXa from inhibition by AT, increasing the half-life from 3 min with FXa, Ca(2+), PCPS, and II(S525C)-fluorescein, to greater than 69 min when FVa was included. Thus, both FVa and prothrombin are necessary for this level of protection. In the absence of prothrombin, FVa decreased the second order rate constant for inhibition by the AT-heparin complex from 1.58 x 10(7) m(-1) s(-1), for FXa, Ca(2+), and PCPS, to 7.72 x 10(6) m(-1) s(-1). II(S525C)-fluorescein and factor Va together reduced the rate constant to less than 1% of that for FXa, Ca(2+), and PCPS. At a heparin concentration of 0.2 unit/ml, this corresponds to a half-life increase from 1 s to 136 s.  相似文献   

16.
We recently demonstrated that a template mechanism makes a significant contribution to the heparin-accelerated inactivation of factor Xa (FXa) by antithrombin at physiologic Ca(2+), suggesting that FXa has a potential heparin-binding site. Structural data indicate that 7 of the 11 basic residues of the heparin-binding exosite of thrombin are conserved at similar three-dimensional locations in FXa. These residues, Arg(93), Lys(96), Arg(125), Arg(165), Lys(169), Lys(236), and Arg(240) were substituted with Ala in separate constructs in Gla domainless forms. It was found that all derivatives cleave Spectrozyme FXa with similar catalytic efficiencies. Antithrombin inactivated FXa derivatives with a similar second-order association rate constant (k(2)) in both the absence and presence of pentasaccharide. In the presence of heparin, however, k(2) with certain mutants were impaired up to 25-fold. Moreover, these mutants bound to heparin-Sepharose with lower affinities. Heparin concentration dependence of the inactivation revealed that only the template portion of the cofactor effect of heparin was affected by the mutagenesis. The order of importance of these residues for binding heparin was as follows: Arg(240) > Lys(236) > Lys(169) > Arg(165) > Lys(96) > Arg(93) >/= Arg(125). Interestingly, further study suggested that certain basic residues of this site, particularly Arg(165) and Lys(169), play key roles in factor Va and/or prothrombin recognition by FXa in prothrombinase.  相似文献   

17.
Inactivation of factor Va (FVa) by activated protein C (APC) is a key reaction in the down-regulation of thrombin formation. FVa inactivation by APC is correlated with a loss of FXa cofactor activity as a result of three proteolytic cleavages in the FVa heavy chain at Arg306, Arg506, and Arg679. Recently, we have shown that heparin specifically inhibits the APC-mediated cleavage at Arg506 and stimulates cleavage at Arg306. Three-dimensional molecular models of APC docked at the Arg306 and Arg506 cleavage sites in FVa have identified several FVa amino acids that may be important for FVa inactivation by APC in the absence and presence of heparin. Mutagenesis of Lys320, Arg321, and Arg400 to Ala resulted in an increased inactivation rate by APC at Arg306, which indicates the importance of these residues in the FVa-APC interaction. No heparin-mediated stimulation of Arg306 cleavage was observed for these mutants, and stimulation by protein S was similar to that of wild type FVa. With this, we have now demonstrated that a cluster of basic residues in FVa comprising Lys320, Arg321, and Arg400 is required for the heparin-mediated stimulation of cleavage at Arg306 by APC. Furthermore, mutations that were introduced near the Arg506 cleavage site had a significant but modest effect on the rate of APC-catalyzed FVa inactivation, suggesting an extended interaction surface between the FVa Arg506 site and APC.  相似文献   

18.
The S1 site (Asp(189)) of factor Xa (fXa) is located on a loop (residues 185-189) that contains three solvent-exposed charged residues (Asp(185), Lys(186), and Glu(188)) below the active-site pocket of the protease. To investigate the role of these residues in the catalytic function of fXa, we expressed three mutants of the protease in which the charges of these residues were neutralized by their substitutions with Ala (D185A, K186A, and E188A). Kinetic studies revealed that E188A has a normal catalytic activity toward small synthetic and natural substrates and inhibitors of fXa; however, the same activities were slightly ( approximately 2-fold) and dramatically ( approximately 20-50-fold) impaired for the D185A and K186A mutants, respectively. Further studies revealed that the affinity of D185A and K186A for interaction with Na(+) has also been altered, with a modest impairment ( approximately 2-fold) for the former and a dramatic impairment for the latter mutant. Both prothrombinase and direct binding studies indicated that K186A also has an approximately 6-fold impaired affinity for factor Va. Interestingly, a saturating concentration of factor Va restored the catalytic defect of K186A in reactions with prothrombin and the recombinant tick anticoagulant peptide that is known to interact with the Na(+) loop of fXa, but not with other substrates. These results suggest that factor Va interacts with 185-189-loop for fXa, which is energetically linked to the Na(+)-binding site of the protease.  相似文献   

19.
Factor V (FV) is a large (2,196 amino acids) nonenzymatic cofactor in the coagulation cascade with a domain organization (A1-A2-B-A3-C1-C2) similar to the one of factor VIII (FVIII). FV is activated to factor Va (FVa) by thrombin, which cleaves away the B domain leaving a heterodimeric structure composed of a heavy chain (A1-A2) and a light chain (A3-C1-C2). Activated protein C (APC), together with its cofactor protein S (PS), inhibits the coagulation cascade via limited proteolysis of FVa and FVIIIa (APC cleaves FVa at residues R306, R506, and R679). The A domains of FV and FVIII share important sequence identity with the plasma copper-binding protein ceruloplasmin (CP). The X-ray structure of CP and theoretical models for FVIII have been recently reported. This information allowed us to build a theoretical model (994 residues) for the A domains of human FV/FVa (residues 1-656 and 1546-1883). Structural analysis of the FV model indicates that: (a) the three A domains are arranged in a triangular fashion as in the case of CP and the organization of these domains should remain essentially the same before and after activation; (b) a Type II copper ion is located at the A1-A3 interface; (c) residues R306 and R506 (cleavage sites for APC) are both solvent exposed; (d) residues 1667-1765 within the A3 domain, expected to interact with the membrane, are essentially buried; (e) APC does not bind to FVa residues 1865-1874. Several other features of factor V/Va, like the R506Q and A221V mutations; factor Xa (FXa) and human neutrophil elastase (HNE) cleavages; protein S, prothrombin and FXa binding, are also investigated.  相似文献   

20.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号