首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid α-glucosidase (α-d-glucoside glucohydrolase, EC 3.2.1.20) from human placenta (70 and 76 kDa) was found to contain 4 N-glycosidic carbohydrate chains per molecule. Sugar analysis of purified enzyme revealed the presence of mannose, N-acetylglucosamine and fucose at a molar ratio of 5.0:2.0:0.6. In addition, trace amounts of galactose and N-acetylneuraminic acid were detected. The sugar chains were liberated from the polypeptides by the hydrazinolysis procedure and subsequently fractionated by gel filtration and HPLC. Purified compounds were investigated by 500-MHz 1H-NMR spectroscopy. Oligomannoside-type chains of intermediate size, e.g., Man5GlcNAcGlcNAc-ol and Man7GlcNAcGlcNAc-ol, and N-type chains of smaller size e.g., Man2–3GlcNAc[Fuc]0–1GlcNAc-ol, were demonstrated to be present at a ratio of 2:3. In addition, a small amount of sialylated N-acetyllactosamine-type chains has been found. The possible biosynthetic route of the fucose-containing small-size chains is discussed.  相似文献   

2.
The extent of glycans heterogeneity in a pathological human immunoglobulin M ZAJ has been studied on oligosaccharides released by hydrazinolysis from the purified glycoprotein. After reduction with NaB3H4, asparagine-linked carbohydrate chains were separated by affinity chromatography on concanavalin A-Sepharose into oligomannosidic and N-acetyllactosaminic types. Glycans of the oligomannosidic type were further fractionated by HPLC and those of the N-acetyllactosamine type by preparative high-voltage electrophoresis. The primary structure of the main oligosaccharides was investigated on the basis of micro-methylation analysis, mass spectrometry and sequential exo-glycosidase digestion. Glycans of the oligomannosidic type varied in size from Man5GlcNAc2 to Man9GlcNAc2. N-Acetyllactosaminic glycans were found of the biantennary, bisected-biantennary and triantennary types. They presented a higher degree of heterogeneity due to the presence of a variable number of NeuAc and fucose residues. The new structures we report here were in addition to the major biantennary one we previously described on the basis of methylation analysis and 500 MHz 1H-NMR spectroscopy (Cahour, A., Debeire, P., Hartmann, L., Montreuil, J., Van Halbeek, H. and Vliegenthart, J.F.G. (1984) FEBS Lett. 170, 343-349): NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[Gal(beta 1-4)Glc-NAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)]Glc-NAc(beta 1-4) [Fuc(alpha 1-6)]GlcNAc.  相似文献   

3.
Structures of the sugar chains of mouse immunoglobulin G   总被引:2,自引:0,他引:2  
The asparagine-linked sugar chains of mouse immunoglobulin G (IgG) were quantitatively liberated as radioactive oligosaccharides from the polypeptide portions by hydrazinolysis followed by N-acetylation, and NaB3H4 reduction. After fractionation by paper electrophoresis, lectin (RCA120) affinity high-performance liquid chromatography, and gel filtration, their structures were studied by sequential exoglycosidase digestion in combination with methylation analysis. Mouse IgG was shown to contain the biantennary complex type sugar chains. Eight neutral oligosaccharide structures, viz, +/- Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(+/- Gal beta 1---- 4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc, were found after the sialidase treatment. The molar ratio of the sugar chains with 2,1, and 0 galactose residues was 2:5:3. The galactose residue in the monogalactosylated sugar chains was distributed on Man alpha 1----3 and Man alpha 1----6 sides in the ratio of 1:3. The oligosaccharides were almost wholly fucosylated and contained no bisecting N-acetylglucosamine which is present in human, rabbit, and bovine IgGs.  相似文献   

4.
The pollen of oil palm (Elaeis guineensis Jacq.) is a strong allergen and causes severe pollinosis in Malaysia and Singapore. In the previous study (Biosci. Biotechnol. Biochem., 64, 820-827 (2002)), from the oil palm pollens, we purified an antigenic glycoprotein (Ela g Bd 31 K), which is recognized by IgE from palm pollinosis patients. In this report, we describe the structural analysis of sugar chains linked to palm pollen glycoproteins to confirm the ubiquitous occurrence of antigenic N-glycans in the allergenic pollen. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine followed by purification with a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, electrospray ionization mass spectrometry (ESI-MS), and tandem MS analysis, as well as exoglycosidase digestions. The antigenic N-glycan bearing alpha1-3 fucose and/or beta1-2 xylose residues accounts for 36.9% of total N-glycans: GlcNAc2Man3Xyl1Fuc1GlcNAc2 (24.6%), GlcNAc2Man3Xyl1GlcNAc2 (4.4%), Man3Xyl1Fuc1-GlcNAc2 (1.1%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (5.6%), and GlcNAc1Man3Xyl1GlcNAc2 (1.2%). The remaining 63.1% of the total N-glycans belong to the high-mannose type structure: Man9GlcNAc2 (5.8%), Man8GlcNAc2 (32.1%), Man7GlcNAc2 (19.9%), Man6GlcNAc2 (5.3%).  相似文献   

5.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

6.
The basidiolipids of six mushroom species, i.e. the basidiomycetes Amanita virosa (engl., death cup), Calvatia exipuliformis (engl., puffball), Cantharellus cibarius (engl., chanterelle), Leccinum scabrum (engl., red birch boletus), Lentinus edodes (jap., Shiitake), and Pleurotus ostreatus (engl., oystermushroom), were isolated, and their chemical structures investigated. All glycolipids are structurally related to those of the Agaricales (engl., field mushroom). They are glycoinositolphosphosphingolipids, their ceramide moiety consisting of t18:0-trihydroxysphinganine and an alpha-hydroxy long-chain fatty acid. In contrast to a previous study [Jennemann, R., Bauer, B.L., Bertalanffy, H., Geyer, R., Gschwind, R.M., Selmer, T. & Wiegandt, H. (1999) Eur. J. Biochem. 259, 331--338], the glycoside anomery of the hexose (mannose) connected to the inositol of all investigated basidiomycete glycolipids, including the basidiolipids of Agaricus bisporus, was determined unequivocally to be alpha. Therefore, the root structure of all basidiolipids consists of alpha-DManp-2Ins1-[PO(4)]-Cer. In addition, for some mushroom species, the occurrence of an inositol substitution position variant, alpha-Manp-4Ins1-[PO(40]-Cer, is shown. The carbohydrate of chanterelle basidiolipids consists solely of mannose, i.e. Cc1, Man alpha-3 or -6Man alpha; Cc2, Man alpha-3(Man alpha-6)Man alpha-. All other species investigated show extension of the alpha-mannoside in the 6-position by beta-galactoside, which, in some instances, is alpha-fucosylated in 2-position (Fuc alpha-2)Gal beta-6Man alpha-. Further sugar chain elongation at the beta-galactoside may be in 3- and/or 6-position by alpha-galactoside, e.g. Ce4, Po2, Gal alpha-3-(Gal alpha-6)(Fuc alpha-2)Gal beta-6Man alpha-, whereas A. virosa, Av-3, has a more complex, highly alpha-fucosylated terminus, Gal alpha-3 (Fuc alpha-2)(Fuc alpha-6)Gal alpha-2(Gal alpha-3)Gal beta-6Man alpha-. L. edodes basidiolipids show further elongation by alpha-mannoside, e.g. Le3, Man alpha-2Man alpha-6Gal alpha-3(Fuc alpha-2)Gal beta-6Man alpha-, C. exipuliformis glycolipid by alpha-glucoside, i.e. Ce3, Glc alpha-6Gal beta-6Man alpha-. Basidiolipid Ls1 from L. scabrum, notably, has a 3-alpha-mannosylated alpha-fucose, i.e. Gal alpha-6(Man alpha-3Fuc alpha-2)Gal alpha-6Gal beta-6Man alpha-. In conclusion, basidiolipids, though identical in their ceramide constitution, display wide and systematic mushroom species dependent variabilities of their chemical structures.  相似文献   

7.
A reductive LiBH4-ButOH cleavage of N-glycosylamide carbohydrate-peptide bond allowed splitting off of oligosaccharide chains of the fucolectin, the bark agglutinin from the shrub golden rain Laburnum anagyroides (LABA). Four N-glycans were isolated by HPLC, and their structures were elucidated by monosaccharide analysis and 1H NMR (500 MHz) spectroscopy: Man2Fuc1XyllGlcNAc2 (M2FX), Man3XyllGlcNAc2 (M3X), Man3FuclXyllGlcNAc2 (M3FX), and Man3XyllFucIGlcNAc3 (NM3FX). All the N-glycans contain D-xylose and three of them, L-fucose; they were found to be in a 1 : 8 : 1 : 3 ratio.  相似文献   

8.
Lysosomal acid alpha-mannosidase from porcine kidney was found to contain mannose (4.8%), galactose (0.9%), fucose (0.5%), N-acetylglucosamine (3.1%), and mannose 6-phosphate (0.1%). Approximately 50% of the total hexose of the oligosaccharide chains could be released by endo-beta-N-acetylglucosaminidase-H (endo-H). They were predominantly neutral, oligomannoside-type oligosaccharides containing 5, 6, and 9 mannose residues, respectively, in the centesimal ratio of 36:25:34. 500-MHz 1H-NMR spectroscopy in conjunction with sequential exoglycosidase digestion of the reduced compounds revealed that each of the three fractions consisted of a single isomer only; the Man9 compound has the following structure: (Formula: see tex). The Man6-compound lacks Man residues D1, D2, and D3, while the Man5-compound lacks Man-C as well. In addition to the neutral ones, some (5%) phosphorylated oligomannoside-type oligosaccharides were obtained. The endo-H resistant glycopeptides were subjected to hydrazinolysis. Approximately 60% of the oligosaccharides released by hydrazine were found to be of rather small size; their composition can be represented asMan2-3GlcNAc[Fuc]0-1GlcNAcol. The remaining 40% consist of larger-size galactose-containing, N-acetyllactosamine-type oligosaccharides. Studies involving sequential exoglycosidase digestion and 500-MHz 1H-NMR spectroscopy performed on the highly purified small-sized compounds revealed the following four structures for the endo-H-resistant oligosaccharides: (Formula: see text).  相似文献   

9.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

10.
Glycoprotein 71 from Friend murine leukemia virus was digested with proteases and the glycopeptides obtained were isolated and assigned, by amino acid sequencing, to the eight N-glycosylated asparagines in the molecule; only Asn334 and Asn341 could not be separated. The oligosaccharides liberated from each glycopeptide by endo-beta-N-acetylglucosaminidase H, or by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, were fractionated and subjected to structural analysis by one- and two-dimensional 1H NMR, as well as by methylation/gas-liquid-chromatography/mass-fragmentography. At each glycosylation site, the substituents were found to be heterogeneous including, at Asn334/341 and Asn410, substitution by different classes of N-glycans: oligomannosidic oligosaccharides, mainly Man alpha 1----6(Man alpha 1----3)Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were detected at Asn168, Asn334/341 and Asn410. Hybrid species, partially sialylated, intersected and (proximally) funcosylated Man alpha 1----6(Man alpha 1----3)Man alpha 1----6 and Man alpha 1----3Man alpha 1----6 and Man alpha 1----3Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were found at Asn12, as previously published [Schlüter, M., Linder, D., Geyer, R., Hunsmann, H., Schneider, J. & Stirm, S. (1984) FEBS Lett. 169, 194-198] and at Asn334/341. N-Acetyllactosaminic glycans, mainly partially intersected and fucosylated NeuAc alpha 2----3 or Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(NeuAc alpha 2----6 or NeuAc alpha 2----3Gal-beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNac beta 1----4GlcNAc beta 1---- with some bifurcation at ----6Man alpha 1----6, were obtained from Asn266, Asn302, Asn334/341, Asn374 and Asn410. In addition, Thr268, Thr277, Thr279, Thr304/309, as well as Ser273 and Ser275, were found to be O-glycosidically substituted by Gal beta 1----3GalNAc alpha 1----, monosialylated or desialylated at position 3 of Gal or/and position 6 of GalNAc.  相似文献   

11.
One side chain in the cell wall mannan of the yeast Kluyveromyces lactis has the structure (see article). (Raschke, W. C., and Ballou, C. E. (1972) Biochemistry 11, 3807). This (Man)4GNAc unit (the N-acetyl-D-glucosamine derivative of mannotetroase) and the (Man)4 side chain, aMan(1 yields 3)aMan(1 yields 2)aMan(1 yields 2)Man, are the principle immunochemical determinants on the cell surface. Two classes of mutants were obtained which lack the N-acetyl-D-glucosamine-containing determinant. The mannan of one class, designated mmnl, lacks both the (Man)4GNAc and (Man)4 side chains. Apparently, it has a defective alpha-1 yields 3-mannosyltransferase and the (Man)4 unit must be formed to serve as the acceptor before the alpha-1 yields 2-N-acetyl-glucosamine transferase can act. The other mutant class, mnn2, lacks only the (Man)4GNAc determinant and must be defective in adding N-acetylglucosamine to the mannotetrasose side chains. Two members of this class were obtained, one which still showed a wild type N-acetylglucosamine transferase activity in cell-free extracts and the other lacking it. They are allelic or tightly linked, and were designated mnn2-1 mnn2-2. Protoplast particles from the wild type cells catalyzed a Mn2+-dependent transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the mannotetraose side chain of endogenous acceptors. Exogenous mannotetraose also served as an acceptor in a Mn2+-dependent reaction and yielded (Man)4GNAc. Related oligosaccharides with terminal alpha (1 yields 3)mannosyl units were also good acceptors. The product from the reaction with alphaMan(1 yields 3)Man had the N-acetylglucosamine attached to the mannose unit at the reducing end, which supports the conclusion that the cell-free glycosyltransferase activity is identical with that involved in mannan synthesis. The reaction was inhibited by uridine diphosphate. Protoplast particles from the mmnl mutants showed wild type N-acetylglucosamine transferase activity with exogenous acceptor, but they had no endogenous activity because the endogenous mannan lacked acceptor side chains. Particles from the mnn2-1 mutant failed to catalyze N-acetylglucosamine transfer. In contrast, particles from the mnn2-2 mutant were indistinguishable from wild type cells in their transferase activity. Some event accompanying cell breakage and assay of the mnn2-2 mutant allowed expression of a latent alpha-1 yields 2-N-acetylglucosamine transferase with kinetic properties similar to those of the wild type enzyme.  相似文献   

12.
The primary structure of the N-linked sugar chains of glucose oxidase from Aspergillus niger was investigated. These sugar chains were released from the polypeptide backbone by hydrazinolysis, and the reducing ends of the sugar chains were pyridylaminated. HPLC of the pyridylamino sugar chains with an amide-silica column showed at least seven sugar chain peaks. Chemical and exoglycosidase digestion and 400 lMHz H-NMR studies of the sugar chains of lower molecular weight showed that these were novel oligomannose-type sugar chains, (Man)5-7 (GlcNAc)2, with the structure: +/- Man alpha 1----3Man alpha 1----3(Man alpha 1----6)Man alpha 1----6(+/- Man alpha 1----3Man alpha 1---3)Man )Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

13.
The effect of dissolved oxygen concentration on human secreted alkaline phosphatase (SEAP) glycosylation by the insect cell-baculovirus expression system was investigated in a well-controlled bioreactor. Oligomannose-type N-linked glycans (i.e., Man2 to Man6 and Man3F) were present in SEAP produced by Spodoptera frusiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines. The relative amounts of the most highly processed glycans (i.e., Man3F and Man2 in the SEAP from Sf-9 and Tn-5B1-4 cells, respectively) were significantly higher at 50% of air saturation than at either 10% or 190% of air saturation. That is, glycan processing was inhibited at both low and high dissolved oxygen concentrations.  相似文献   

14.
Gemmill  TR; Trimble  RB 《Glycobiology》1998,8(11):1087-1095
The large N-linked oligosaccharides released from Schizosaccharomyces pombe by endo-beta-N-acetylglucosaminidase H were examined to determine how the negatively chargedpyruvylated galactoses present (Gemmill,T.R., and Trimble,R.B., 1996, J. Biol. Chem ., 271, 25945-25949) were attached to the oligosaccharide chains. Binding of biotinylated human serum amyloid P and peanut agglutinin to native and depyruvylated S.pombe glycoproteins, respectively, indicated that the pyruvylated epitope was likely to be in the beta configuration. Examination by high- field 1H NMR of whole glycans and a disaccharide fragment released from them on partial acid hydrolysis showed that the pyruvylated galactose species was in fact beta1,3-linked to a second galactose, and this occurred an average of five to six times on nominal Gal57Man64GlcNAc N- glycans. The pyruvate-2,(4,6)Gal-beta1,3Gal epitope is chemically similar to acetaldehyde-Galbeta1,3Gal groups found on the glycoproteins from Paramyxovirus-infected bovine kidney cells (Prehm, P., Scheid,A. and Choppin,P.W. ,1979, J. Biol. Chem ., 254, 9669-9677). The 1:1 stoichiometry between pyruvate and beta-linked galactose in these S.pombe glycans indicates that either pyruvate addition to terminal beta1,3Gal is highly efficient or that pyruvylated Gal is transferred en bloc to alpha1,2-linked Gal residues in theN-linked chains. In contradiction to many galactomannan-producing fungi, which add substantial amounts of Gal in the furanose form to their glycoproteins, all detectable Gal in the large S.pombe galactomannans is in the pyranose form, as found in higher eukaryotes. The current work shows that the S.pombe outer chain structure is a poly-alpha1,6Man backbone 2- O-substituted with either Gal or the pyruvylated galactobiose and contains little alpha1,2-linked or 2-O-substituted Man. This is in contrast to the S. cerevisiae outer chain, which is poly-alpha1,6Man substituted with alpha1,2-linked Man sidechains (Ballou,C.E. ,1990, Methods Enzymol , 185, 440-470).   相似文献   

15.
In addition to utilizing glycosylated phosphatidylinositols (GPIs) as anchors for surface proteins, protozoan parasites of the genus Leishmania synthesize two novel classes of GPI: the polydisperse lipophosphoglycans (LPGs) and a family of low molecular weight glycoinositol phospholipids (GIPLs). We now show that LPG is expressed in high copy number (6 x 10(6) molecules/cell) in the promastigote (insect) stage of L. donovani but not in the amastigote stage, which infects mammalian macrophages. Detection of these molecules was by gas chromatography-mass spectrometric analyses and by a sensitive radiolabeling procedure. In contrast, a novel family of GIPLs was present in high copy number (approximately 10(7) molecules/cell) in both promastigote and amastigote stages of L. donovani. These glycolipids were purified and analyzed by gas chromatography-mass spectrometry, methylation analysis, and by chemical and enzymatic sequencing after deamination and NaB3H4 reduction. Promastigotes contained three major GIPLs species with the following generalized structure [formula: see text] where R = H for isoM2, Man alpha 1- for isoM3 or Man alpha 1-2Man alpha 1- for isoM4. Amastigotes contained two major GIPL species that lacked the alpha 1-3-linked mannose branch and had the linear structures Man alpha 1-6Man alpha 1-4GlcN (M2) and Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN (M3) linked to alkylacyl-PI. The 1-O-alkyl-2-acyl-PI moieties of all these species contained predominantly C18:0 alkyl chains and C16:0 or C18:0 fatty acids. Amastigotes contained, in addition, a GalNAc beta 1-3 terminating glycosphingolipid with homology to the mammalian para Forssman glycolipid. This glycolipid appeared to be a constituent of the parasite membrane but was not metabolically labeled with [3H]glucose, suggesting that it was acquired from host cells. These results suggest that LPG may not be required for amastigote survival in the mammalian host and that the GIPLs are likely to be major components on the surface membrane in both stages.  相似文献   

16.
A series of high mannose oligosaccharides with the size range Man8-14GlcNAc was purified from Saccharomyces cerevisiae invertase, and the composition of each was determined by chemical analysis. Purity and composition were verified by 1H NMR spectroscopy at 500 MHz, and structures were assigned on the basis of chemical shifts in C1-H and C2-H protons of similarly substituted compounds of known structure. Such analyses showed that these invertase oligosaccharides were a homologous series of homogeneous compounds, each related to the next member by addition of 1 mol of mannose in a specific alpha-linked configuration. Man8GlcNAc purified from the total glycoprotein fraction of disrupted yeast was the smallest species found and had the same homogeneous structure as that previously reported for the Man8GlcNAc from invertase (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666). Digestion of Man8-13GlcNAc species from invertase with Aspergillus satoi alpha 1,2-mannosidase provided products that were consistent with the structures assigned by 1H NMR as did fast atom bombardment-mass spectroscopy fragmentation analysis of the Man9,10GlcNAc oligosaccharides. These results lead to the proposal that Man8GlcNAc is the only trimming intermediate in Saccharomyces sp., and the remaining Man9-14GlcNAc oligosaccharides are biosynthetic intermediates which define the principal pathway of single-step mannose addition in the formation of the inner core of yeast mannan.  相似文献   

17.
Sasaki A  Ishimizu T  Geyer R  Hase S 《The FEBS journal》2005,272(7):1660-1668
Endo-beta-mannosidase is an endoglycosidase that hydrolyzes only the Man beta 1-4GlcNAc linkage of the core region of N-linked sugar chains. Recently, endo-beta-mannosidase was purified to homogeneity from Lilium longiflorum (Lily) flowers, its corresponding gene was cloned and important catalytic amino acid residues were identified [Ishimizu T., Sasaki A., Okutani S., Maeda M., Yamagishi M. & Hase S. (2004) J. Biol. Chem.279, 38555-38562]. In the presence of Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides as a donor substrate and p-nitrophenyl beta-N-acetylglucosaminide as an acceptor substrate, the enzyme transferred mannose to the acceptor substrate by a beta1-4-linkage regio-specifically and stereo-specifically to give Man beta 1-4GlcNAc beta 1-pNP as a transfer product. Further studies indicated that not only p-nitrophenyl beta-N-acetylglucosaminide but also p-nitrophenyl beta-glucoside and p-nitrophenyl beta-mannoside worked as acceptor substrates, however, p-nitrophenyl beta-N-acetylgalactosaminide did not work, indicating that the configuration of the hydroxyl group at the C4 position of an acceptor is important. Besides mannose, oligomannoses were also transferred. In the presence of (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides (n = 0-2) and pyridylamino GlcNAc beta 1-4GlcNAc, the enzyme transferred (Man)(n)Man alpha 1-6Man en bloc to the acceptor substrate to produce pyridylamino (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc (n =0-2). Thus, the lily endo-beta-mannosidase is useful for the enzymatic preparation of oligosaccharides containing the mannosyl beta 1,4-structure, chemical preparations of which have been frequently reported to be difficult.  相似文献   

18.
Structure of Saccharomyces cerevisiae alg3, sec18 mutant oligosaccharides   总被引:3,自引:0,他引:3  
Asparagine-linked oligosaccharides are synthesized by transfer of Glc3Man9GlcNAc2 from dolichol pyrophosphate to nascent polypeptides. Assembly of the precursor proceeds by highly ordered sequential addition of mannose and glucose to form Glc3Man9GlcNAc2-P-P-dolichol. Yeast mutants in asparagine-linked glycosylation (alg), generated by an 3H-Man suicide technique, were assigned to eight complementation groups which define steps in oligosaccharide-lipid synthesis (Huffaker, T.C., and Robbins, P.W. (1982) J. Biol. Chem. 257, 3203-3210). Alg3 invertase oligosaccharides are resistant to endo-beta-N-acetylglucosaminidase H, and the lipid-oligosaccharide pool yields Man5Glc-NAc2, suggesting its structure may be that from mammalian cells lacking Man-P-dolichol (Chapman, A., et al. (1980) J. Biol. Chem. 255, 4441-4446). To test this supposition, the endoplasmic reticulum form of invertase derepressed in alg3,sec18 yeast at 37 degrees C was isolated as a source of oligosaccharides whose processing beyond glucose and/or mannose trimming, if involved, would be prevented. Man8GlcNAc2 and Man5GlcNAc2 were released by peptide-N-glycosidase F from alg3,sec18 invertase in a 1:5 molar ratio. 1H NMR spectroscopy revealed Man8GlcNAc2 to be the alpha 1,2-mannosidase-trimming product described earlier (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666), while Man5GlcNAc2 was Man alpha 1, 2Man alpha 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc beta 1, 4GlcNAc. This provides a structural proof for the lipid-linked Man5GlcNAc2 originally proposed from enzymatic and chemical analyses of the radiolabeled mammalian precursor. Experimental evidence indicates that, unlike the mammalian cell mutants which are unable to synthesize Man-P-dolichol, alg3 yeast accumulate Man5GlcNAc2-P-P-dolichol due to a defective alpha 1,3-mannosyltransferase required for the next step in oligosaccharide-lipid elongation.  相似文献   

19.
In our previous study (Woo, K. K., et al., Biosci. Biotechnol. Biochem., 68, 2547-2556 (2004), we purified an alpha-mannosidase from Ginkgo biloba seeds; it was activated by cobalt ions and highly active towards high-mannose type free N-glycans occurring in plant cells. In the present study, we have found that the substrate specificity of Ginkgo alpha-mannosidase is significantly regulated by cobalt ions. When pyridylamino derivative of Man9GlcNAc2 (M9A) was incubated with Ginkgo alpha-mannosidase in the absence of cobalt ions, Man5GlcNAc2-PA (M5A) having no alpha1-2 mannosyl residue was obtained as a major product. On the other hand, when Man9GlcNAc2-PA was incubated with alpha-mannosidase in the presence of Co2+ (1 mM), Man3-1GlcNAc2-PA were obtained as major products releasing alpha1-3/6 mannosyl residues in addition to alpha1-2 mannosyl residues. The structures of the products (Man8-5GlcNAc2-PA) derived from M9A by enzyme digestion in the absence of cobalt ions were the same as those in the presence of cobalt ions. These results clearly suggest that the trimming pathway from M9A to M5A is not affected by the addition of cobalt ions, but that hydrolytic activity towards alpha1-3/6 mannosyl linkages is stimulated by Co2+. Structural analysis of the products also showed clearly that Ginkgo alpha-mannosidase can produce truncated high-mannose type N-glycans, found in developing or growing plant cells, suggesting that alpha-mannosidase might be involved in the degradation of high-mannose type free N-glycans.  相似文献   

20.
Nonspecific cross-reacting antigen-2 (NCA-2) is a glycoprotein purified from meconium as a closely correlated entity with carcinoembryonic antigen (CEA). As in the case of CEA, only asparagine-linked sugar chains are included in NCA-2. In order to elucidate the structural characteristics of the sugar chains of NCA-2, they were quantitatively released from the polypeptide backbone by hydrazinolysis and reduced with NaB3H4 after N-acetylation. The radioactive oligosaccharides were fractionated by paper electrophoresis, serial chromatography on immobilized lectin columns, and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of the oligosaccharides were estimated from the data of the binding specificities of immobilized lectin columns and the effective size of each oligosaccharide determined by passing through a Bio-Gel P-4 column and were then confirmed by endo-beta-galactosidase digestion, sequential digestion with exoglycosidases with different aglycon specificities, and methylation analysis. NCA-2 contains a similar number (27 mol) of sugar chains in one molecule compared with CEA (24-26 mol). However, all sugar chains of NCA-2 were complex-type in contrast to CEA, approximately 8% of the sugar chains of which were high mannose-type (Yamashita, K., Totani, K., Kuroki, M., Matsuoka, Y., Ueda, I., and Kobata, A. (1987) Cancer Res. 47, 3451-3459). About 80% of the oligosaccharides from NCA-2 contain bisecting N-acetylglucosamine residues, and the percent molar ratio of mono-, bi, tri, and tetraantennary oligosaccharides was 2:14:57:27. (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, and GalNAc beta 1----3Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4GlcNAc were found as their outer chain moieties. Approximately 60% of the oligosaccharides from NCA-2 contain the Gal beta 1----4 or 3GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----group in their outer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号