首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary The plasma membrane (PM) of higher plants contains a major ascorbate-reducible, high-potentialb-type cytochrome, named cytochromeb 561 (cytb 561). In this paper a rapid purification protocol for the cytb 561 of bean hypocotyls PM is described. An almost 200-fold increase of cytb 561 specific concentration was achieved with respect to the PM fraction, which contained about 0.2 nmol of ascorbate-reducible heme per mg protein. The procedure can be performed in one day starting from purified PMs obtained by the phase-partitioning procedure. However, cytb 561 proved to be unstable during chromatographic purification and the amount of protein finally recovered was low. Purified cytb 561 eluted as a 130,000 Da protein-detergent complex from gel-filtration columns. It was completely reduced by ascorbate and reduced-minus-oxidized spectra showed -, - and -bands at 561, 530, and 429 nm respectively, not unlike the spectra of whole PMs. This work represents an initial approach to the biochemical characterization of the cytb 561 of higher plants, formerly suggested to be related to cytb 561 of animal chromaffin granules.Abbreviations cytb 561 cytochromeb 561 - PM plasma membrane - UPV upper-phase vesicles - GSII glucan synthase II - CCR NADH-dependent cytochromec reductase - CCO cytochromec oxidase - TX-100R reduced Triton X-100  相似文献   

2.
Summary During the past twenty years evidence has accumulated on the presence of a specific high-potential, ascorbate-reducibleb-type cytochrome in the plasma membrane (PM) of higher plants. This cytochrome is named cytochromeb 561 (cytb 561) according to the wavelength maximum of its -band in the reduced form. More recent evidence suggests that this protein is homologous to ab-type cytochrome present in chromaffin granules of animal cells. The plant and animal cytochromes share a number of strikingly similar features, including the high redox potential, the ascorbate reducibility, and most importantly the capacity to transport electrons across the membrane they are located in. The PM cytb 561 is found in all plant species and in a variety of tissues tested so far. It thus appears to be a ubiquitous electron transport component of the PM. The cytochromesb 561 probably constitute a novel class of transmembrane electron transport proteins present in a large variety of eukaryotic cells. Of particular interest is the recent discovery of a number of plant genes that show striking homologies to the genes coding for the mammalian cytochromesb 561. A number of highly relevant structural features, including hydrophobic domains, heme ligation sites, and possible ascorbate and monodehydroascorbate binding sites are almost perfectly conserved in all these proteins. At the same time the plant gene products show interesting differences related to their specific location at the PM, such as potentially N-linked glycosylation sites. It is also clear that at least in several plants cytb 561 is represented by a multigene family. The current paper presents the first overview focusing exclusively on the plant PM cytb 561, compares it to the animal cytb 561, and discusses the possible physiological function of these proteins in plants.Abbreviations Asc ascorbate - cyt cytochrome - DHA dehydroascorbate - E0 standard redox potential - EST expressed sequence tag - His histidine - MDA monodehydroascorbate - Met methionine - PM plasma membrane  相似文献   

3.
Summary Cytochromeb 561 (cytb 561) is a trans-membrane cytochrome probably ubiquitous in plant cells. In vitro, it is readily reduced by ascorbate or by juglonol, which in plasma membrane (PM) preparations from plant tissues is efficiently produced by a PM-associated NAD(P)Hquinone reductase activity. In bean hypocotyl PM, juglonol-reduced cytb 561 was not oxidized by hydrogen peroxide alone, but hydrogen peroxide led to complete oxidation of the cytochrome in the presence of a peroxidase found in apoplastic extracts of bean hypocotyls. This peroxidase active on cytb 561 was purified from the apoplastic extract and identified as an ascorbate peroxidase of the cytosolic type. The identification was based on several grounds, including the ascorbate peroxidase activity (albeit labile), the apparent molecular mass of the subunit of 27 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the dimeric native structure, the typical spectral properties of a heme-containing peroxidase, and an N-terminal sequence strongly conserved with cytosolic ascorbate peroxidases of plants. Cytb 561 used in the experiments was purified from bean hypocotyl PM and juglonol was enzymatically produced by recombinant NAD(P)H:quinone reductase. It is shown that NADPH, NAD(P)H:quinone reductase, juglone, cytb 561, the peroxidase interacting with cytb 561, and H2O2, in this order, constitute an artificial electron transfer chain in which cytb 561 is indirectly reduced by NADPH and indirectly oxidized by H2O2.Abbreviations APX ascorbate peroxidase - b 561PX cytochrome 6561 peroxidase - CPX coniferol peroxidase - cyt cytochrome - GPX guaia-col peroxidase - IWF intercellular washing fluid - MDHA monodehydroascorbate - PM plasma membrane  相似文献   

4.
Preger V  Scagliarini S  Pupillo P  Trost P 《Planta》2005,220(3):365-375
Two membrane-bound, ascorbate-dependent b-type cytochromes were identified in etiolated bean (Phaseolus vulgaris L.) hypocotyls. Following solubilization of microsomal membranes and anion-exchange chromatography at pH 8.0, two major cytochrome peaks (P-I and P-II) were separated. Both cytochromes were reduced by ascorbate and re-oxidized by monodehydroascorbate, but P-I reduction by ascorbate was higher and saturated at far lower concentrations of ascorbate with respect to P-II. The -band was symmetrically centered at 561 nm in P-I, but it was asymmetric in P-II with a maximum at 562 nm and shoulder at 557 nm. Ascorbate reduction of P-II, but not P-I, was inhibited by diethyl pyrocarbonate. Reduced P-II but not P-I was readily oxidized by certain ferric chelates, including FeEDTA and Fe-nitrilotriacetic acid. Purified P-I, associated with the plasma membrane, showed up as a 63-kDa glycosylated protein during sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and behaved as a monomer of about 70 kDa during size-exclusion chromatography. P-I identified with a previously purified ascorbate-dependent b-type cytochrome of bean hypocotyl plasma membranes [P. Trost et al. (2000) Biochim Biophys Acta 1468:1–5]. Partially purified P-II, on the other hand, correlated with a heme-protein of 27 kDa in SDS–PAGE gels, was dimeric (60 kDa) during size-exclusion chromatography, and was associated with the tonoplast marker V-ATPase in sucrose gradients. The sequence of a peptide of 11 residues obtained by tryptic digestion of P-II was found to be identical to a segment of a putative cytochrome b561 of Zea mays and highly conserved in other related plant sequences, including that of Arabidopsis thaliana cytochrome b561-1 (CAA18169). The biochemical features fully support the assignment of P-II cytochrome to the family of cytochrome b561, ascorbate-dependent (CYBASC) cytochromes, which also includes cytochrome b561 of animal chromaffin granules. The presence of a cytochrome reducing ferric chelates on the tonoplast is consistent with the role of plant vacuoles in iron homeostasis.  相似文献   

5.
Summary The complete nucleotide sequence of the Escherichia coli cybB gene for diheme cytochrome b 561 and its flanking region was determined. The cybB gene comprises 525 nucleotides and encodes a 175 amino acid polypeptide with a molecular weight of 20160. From its deduced amino acid sequence, cytochrome b 561 is predicted to be very hydrophobic (polarity 33.7%) and to have three membrane spanning regions. Histidines, canonical ligand residues for protohemes, are localized in these regions, and the heme pockets are thought to be in the cytoplasmic membrane. No significant homology of the primary structure of cytochrome b 561 with those of other bacterial b-type cytochromes was observed.  相似文献   

6.
Summary Higher plant plasma membranes contain ab-type cytochrome that is rapidly reduced by ascorbic acid. The affinity towards ascorbate is 0.37 mM and is very similar to that of the chromaffin granule cytochromeb 561. High levels of cytochromeb reduction are reached when ascorbic acid is added either on the cytoplasmic or cell wall side of purified plasma membrane vesicles. This result points to a transmembrane organisation of the heme protein or alternatively indicates the presence of an effective ascorbate transport system. Plasma membrane vesicles loaded by ascorbic acid are capable of reducing extravesicular ferricyanide. Addition of ascorbate oxidase or washing of the vesicles does not eliminate this reaction, indicating the involvement of the intravesicular electron donor. Absorbance changes of the cytochromeb -band suggest the electron transfer is mediated by this redox component. Electron transport to ferricyanide also results in the generation of a membrane potential gradient as was demonstrated by using the charge-sensitive optical probe oxonol VI. Addition of ascorbate oxidase and ascorbate to the vesicles loaded with ascorbate results in the oxidation and subsequent re-reduction of the cytochromeb. It is therefore suggested that ascorbate free radical (AFR) could potentially act as an electron acceptor to the cytochrome-mediated electron transport reaction. A working model on the action of the cytochrome as an electron carrier between cytoplasmic and apoplastic ascorbate is discussed.Abbreviations AFR ascorbate free radical - AO ascorbate oxidase - DTT dithiothreitol - FCCP carbonylcyanidep-trifluorome-thoxyphenylhydrazon - Hepes N-(2-hydroxyethyl)-piperazine-N-(2-ethanesulfonic acid) - Oxonol VI bis(3-propyl-5-oxoisoxazol-4-yl) penthamethine oxonol - PMSF phenylmethylsulfluoride  相似文献   

7.
The hydroxylation of CMP-NeuAc has been demonstrated to be carried out by several factors including the soluble form of cytochromeb 5. In the present study, mouse liver cytosol was subjected to ammonium sulfate fractionation and cellulose phosphate column chromatography for the separation of two other essential fractions participating in the hydroxylation. One of the fractions, which bound to a cellulose phosphate column, was able to reduce the soluble cytochromeb 5, using NADH as an electron donor. The other fraction, which flowed through the column, was assumed to contain the terminal enzyme which accepts electrons from cytochromeb 5, activates oxygen, and catalyses the hydroxylation of CMP-NeuAc. Assay conditions for the quantitative determination of the terminal enzyme were established, and the activity of the enzyme in several tissues of mouse and rat was measured. The level of the terminal enzyme activity is associated with the expression ofN-glycolylneuraminic acid in these tissues, indicating that the expression of the terminal enzyme possibly regulates the overall velocity of CMP-NeuAc hydroxylation.Abbreviations CMP cytidine 5-monophosphate - NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - DTT dithiothreitol  相似文献   

8.
The following findings concerning the structure of the cytochromeb 6 f complex and its component polypeptides, cytb 6, subunit IV and cytochromef subunit are discussed:
(1)  Comparison of the amino acid sequences of 13 and 16 cytochromeb 6 and subunit IV polypeptides, respectively, led to (a) reconsideration of the helix lengths and probable interface regions, (b) identification of two likely surface-seeking helices in cytb 6 and one in SU IV, and (c) documentation of a high degree of sequence invariance compared to the mitochondrial cytochrome. The extent of identity is particularly high (88% for conserved and pseudoconserved residues) in the segments of cytb 6 predicted to be extrinsic on then-side of the membrane.
(2)  The intramembrane attractive forces betweentrans-membrane helices that normally stabilize the packing of integral membrane proteins are relatively weak.
(3)  The complex isolated in dimeric form has been visualized, along with isolated monomer, by electron microscopy. The isolated dimer is much more active than the monomer, is the major form of the complex isolated and purified from chloroplasts, and is inferred to be a functional form in the membrane.
(4)  The isolated cytb 6 f complex contains one molecule of chlorophylla.
(5)  The structure of the 252 residue lumen-side domain of cytochromef isolated from turnip chloroplasts has been solved by X-ray diffraction analysis to a resolution of 2.3 Å.
  相似文献   

9.
Thiobacillus tepidarius was shown to contain cytochrome(s) c with absorption maxima at 421, 522 and 552 nm in room temperature reduced minus oxidized difference spectra, present at 1.1–1.2 nmol per mg dry wt and present in both membrane and soluble fractions of the cell. The membrane-bound cytochrome c (1.75 nmol per mg membrane protein) had a midpoint potential (Em, pH 7.0) of 337 mV, while the soluble fractions appeared to contain cytochrome(s) c with Em (pH 7.0) values of about 270 and 360 mV. The organism also contained three distinct membrane-bound b-type cytochromes (totalling 0.33 nmol per mg membrane protein), each with absorption maxima in reduced minus oxidized difference spectra at about 428, 532 and 561 nm. The Em (pH 7.0) values for the three cytochromes b were 8 mV (47.8% of total), 182 mV (13.7%) and 322 mV (38.5%). No a- or d-type cytochromes were detectable spectrophotometrically in the intact organism or its membrane and soluble fractions. Evidence is presented for both CO-binding and CO-unreactive cytochromes b or o, and CO-binding cytochrome(s) c. From redox effects observed with CO it is proposed that a cytochrome c donates electrons to a cytochrome b, and that a high potential cytochrome b or o may be acting as the terminal oxidase in substrate oxidation. This may be the 445 nm pigment, a photodissociable CO-binding membrane haemoprotein. Substrate oxidation was relatively insensitive to CO-inhibition, but strongly inhibited by cyanide and azide. Thiosulphate oxidation couples directly to cytochrome c reduction, but tetrathionate oxidation is linked (probably via ubiquinone Q-8) to reduction of a cytochrome b of lower potential than the cytochrome c. The nature of possible electron transport pathways in Thiobacillus tepidarius is discussed. One speculative sequence is: c b8 b182 c270 c337 b322/c360 O2 Abbreviations Em midpoint electrode potential - E inf0 sup pH 7, standard electrode potential at pH 7.0 - Q-8 coenzyme Q-8 (ubiquinone-40)  相似文献   

10.
Turnover of the ubiquinol oxidizing site of the UQH2:cyt c2 oxidoreductase (b/c 1 complex) ofRps. sphaeroides can be assayed by measuring the rate of reduction of cytb 561 in the presence of antimycin (AA). Oxidation of ubiquinol is a second-order process, with a value ofk 2 of about 3 × 105 M–1. The reaction shows saturation at high quinol concentrations, with an apparentK m of about 6–8 mM (with respect to the concentration of quinol in the membrane). When the quinone pool is oxidized before illumination, reduction of the complex shows a substantial lag (about 1 ms) after a flash, indicating that the quinol produced as a result of the photochemical reactions is not immediately available to the complex. We have suggested that the lag may be due to several factors, including the leaving time of the quinol from the reaction center, the diffusion time to the complex, and the time for the head group to cross the membrane. We have suggested aminimal value for the diffusion coefficient of ubiquinone in the membrane (assuming that the lag is due entirely to diffusion) of about 10–9 cm–2 sec–1. The lag is reduced to about 100 µsec when the pool is significantly reduced, showing that quinol from the pool is more rapidly available to the complex than that from the reaction center. With the pool oxidized, similar kinetics are seen when the reduction of cytb 561 occurs through the AA-sensitive site (with reactions at the quinol oxidizing site blocked by myxothiazol). These results show that there is no preferential reaction pathway for transfer of reducing equivalents from reaction center tob/c 1 complex. Oxidation of cytb 561 through the AA-sensitive site can be assayed from the slow phase of the carotenoid electrochromic change, and by comparison with the kinetics of cytb 561. As long as the quinone pool is significantly oxidized, the reaction is not rate-determining for the electrogenic process. On reduction of the pool below 1 quinone per complex, a slowing of the electrogenic process occurs, which could reflect a dependence on the concentration of quinone. If the process is second-order, the rate constant must be about 2–5 times greater than that for quinol oxidation, since the effect on rate is relatively small compared with the effect seen at the quinol oxidizing site when the quinol concentration is changed over theE h range where the first few quinols are produced on reductive titration. When the quinone pool is extracted (experiments in collaboration with G. Venturoli and B. A. Melandri), the slowing of the electrochromic change on reduction of the pool is not enhanced; we assume that this is due to the fact that a minimum of one quinone per active complex is produced by turnover of the quinol oxidizing site. Two lines of research lead us to revise our previous estimate for the minimal value of the quinone diffusion coefficient. These relate to the relation between the diffusion coefficient and the rate constants for processes involving the quinones: (a) The estimated rate constant for reaction of quinone at the AA-site approaches the calculated diffusion limited rate constant, implying an improbably efficient reaction. (b) From a preliminary set of experiments, the activation energy determined by measuring the variation of the rate constant for quinol oxidation with temperature, is about 8 kcal mol–1. Although we do not know the contribution of entropic terms to the pre-exponential factor, the result is consistent with a considerably larger value for the diffusion coefficient than that previously suggested.  相似文献   

11.
An improved procedure for the isolation of the cytochromeb 6/f complex from spinach chloroplasts is reported. With this preparation up to tenfold higher plastoquinol-plastocyanin oxidoreductase activities were observed. Like the complex obtained by our previous procedure, the complex prepared by the modified way consisted of five polypeptides with apparent molecular masses of 34, 33, 23, 20, and 17 kD, which we call Ia, Ib, II, III, and IV, respectively. In addition, one to three small components with molecular masses below 6 kD were now found to be present. These polypeptides can be extracted with acidic acetone. Cytochromef, cytochromeb 6, and the Rieske Fe-S protein could be purified from the isolated complex and were shown to be represented by subunits Ia + Ib, II, and III, respectively. The heterogeneity of cytochromef is not understood at present. Estimations of the stoichiometry derived from relative staining intensities with Coomassie blue and amido black gave 1:1:1:1 for the subunits Ia + Ib/II/III/IV, which is interesting in of the presence of two cytochromesb 6 per cytochromef. Cytochromef titrated as a single-electron acceptor with a pH-independent midpoint potential of +339 mV between pH 6.5 and 8.3, while cytochromeb 6 was heterogeneous. With the assumption of two components present in equal amounts, two one-electron transitions withE m(1)=–40 mV andE m(2)=–172 at pH 6.5 were derived. Both midpoint potentials were pH-dependent.Abbreviation Tris tris(hydroxymethyl)aminomethane - SDS sodium dodecylsulfate - SDS-PAGE SDS polyacrylamide gel electrophoresis - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

12.
The interaction of reduced rabbit cytochrome b5 with reduced yeast iso-1 cytochrome c has been studied through the analysis of 1H–15N HSQC spectra, of 15N longitudinal (R1) and transverse (R2) relaxation rates, and of the solvent exchange rates of protein backbone amides. For the first time, the adduct has been investigated also from the cytochrome c side. The analysis of the NMR data was integrated with docking calculations. The result is that cytochrome b5 has two negative patches capable of interacting with a single positive surface area of cytochrome c. At low protein concentrations and in equimolar mixture, two different 1:1 adducts are formed. At high concentration and/or with excess cytochrome c, a 2:1 adduct is formed. All the species are in fast exchange on the scale of differences in chemical shift. By comparison with literature data, it appears that the structure of one 1:1 adduct changes with the origin or primary sequence of cytochrome b5.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Abbreviations HSQC heteronuclear single quantum correlation spectroscopy - MD molecular dynamics  相似文献   

13.
14.
Summary An NADH-cytochromeb 5 reductase was purified from rat liver plasma membranes. Rat liver plasma membranes were prepared by aqueous two-phase partition. Peripheral proteins were removed by EDTA extraction and integral membrane proteins were solubilized with Triton X-100. The NADH-cytochromeb 5 reductase was purified by hydroxyapatite, anion exchange, and gel filtration chromatographies. The purified preparation was homogeneous and estimated to have an apparent molecular weight of 32 kDa on SDS-polyacrylamide gel electrophoresis. Two tryptic peptides of the purified enzyme had sequence homologies with rat, human, and bovine NADH-cytochromeb 5 reductases.Abbreviations CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate - BCA bicinchonicic acid - EDTA ethylenediamine tetraacetate acid disodium salt - FeCN ferricyanide - HPLC high-performance liquid chromatography - NADH nicotinamide adenine dinucleotide reduced form - PMSF -phenylmethylsulfonyl fluoride  相似文献   

15.
Depletion of endogenous ubiquinone by pentane extraction of mitochondrial membranes lowered succinate-ferricyanide reductase activity, whereas quinone reincorporation restored the enzymatic activity as well as antimycin sensitivity. The oxidant-induced cytochromeb extrareduction, normally found upon ferricyanide pulse in intact mitochondria in the presence of antimycin, was lost in ubiquinone-depleted membranes, even if cytochromec was added. Readdition of ubiquinone-2 restored the oxidant-induced extrareduction with an apparent half saturation at 1 mol/molbc 1 complex saturating at about 5 mol/mol. These findings demonstrate a requirement for the ubiquinone pool of the cytochromeb extrareduction. Since the initial rates of cytochromeb reoxidation upon ferricyanide addition, in the presence of antimycin, did not saturate by any ferricyanide concentration in ubiquinone-depleted mitochondria, a direct chemical reaction between ferricyanide and reduced cytochromeb was postulated. The fact that such direct reaction is much faster in ubiquinone-depleted mitochondria may explain the lower antimycin sensitivity of the succinate ferricyanide reductase activity after removal of endogenous ubiquinone.  相似文献   

16.
The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.  相似文献   

17.
The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (QP-C). The Q binding proteins are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.  相似文献   

18.
(1) The electron transport system of heterotrophically dark-grown Rhodobacter capsulatus was investigated using the wild-type strain MT1131 and the phototrophic non-competent (Ps-) mutant MT-GS18 carrying deletions of the genes for cytochrome c 1 and b of the bc 1 complex and for cytochrome c 2. (2) Spectroscopic and thermodynamic data demonstrate that deletion of both bc 1 complex and cyt. c 2 still leaves several haems of c- and b-type with Em7.0 of +265 mV and +354 mV at 551–542 nm, and +415 mV and +275 mV at 561–575 nm, respectively. (3) Analysis of the oxidoreduction kinetic patterns of cytochromes indicated that cyt. b 415 and cyt. b 275 are reduced by either ascorbate-diaminodurene or NADH, respectively. (4) Growth on different carbon and nitrogen sources revealed that the membrane-bound electron transport chain of both MT1131 and MT-GS18 strains undergoes functional modifications in response to the composition of the growth medium used. (5) Excitation of membrane fragments from cells grown in malate minimal medium by a train of single turnover flashes of light led to a rapid oxidation of 32% of the membrane-bound c-type haem complement. Conversely, membranes prepared from peptone/yeast extract grown cells did not show cyt. c photooxidation. These results are discussed within the framework of an electron transport chain in which alternative pathways bypassing both the cyt. c 2 and bc 1 complex might involve high-potential membrane bound haems of b- and c-type.Abbreviations AA antimycin A - CCCP carbonylcyanide m-chlorophenyl hydrazone - CN- cyanide - DAD diaminodurene - Q2H2 ubiquinol-2 - Q-pool ubiquinone-10 pool - RC photochemical reaction center  相似文献   

19.
It has been suggested that two groups ofEscherichia coli genes, theccm genes located in the 47-min region and thenrfEFG genes in the 92-min region of the chromosome, are involved in cytochromec biosynthesis during anaerobic growth. The involvement of the products of these genes in cytochromec synthesis, assembly and secretion has now been investigated. Despite their similarity to other bacterial cytochromec assembly proteins, NrfE, F and G were found not to be required for the biosynthesis of any of thec-type cytochromes inE. coli. Furthermore, these proteins were not required for the secretion of the periplasmic cytochromes, cytochromec 550 and cytochromec 552, or for the correct targeting of the NapC and NrfB cytochromes to the cytoplasmic membrane. NrfE and NrfG are required for formate-dependent nitrite reduction (the Nrf pathway), which involves at least twoc-type cytochromes, cytochromec 552 and NrfB, but NrfF is not essential for this pathway. Genes similar tonrfE, nrfF andnrfG are present in theE. coli nap-ccm locus at minute 47. CcmF is similar to NrfE, the N-terminal region of CcmH is similar to NrfF and the C-terminal portion of CcmH is similar to NrfG. In contrast to NrfF, the N-terminal, NrfF-like portion of CcmH is essential for the synthesis of allc-type cytochromes. Conversely, the NrfG-like C-terminal region of CcmH is not essential for cytochromec biosynthesis. The data are consistent with proposals from this and other laboratories that CcmF and CcmH form part of a haem lyase complex required to attach haemc to C-X-X-C-H haem-binding domains. In contrast, NrfE and NrfG are proposed to fulfill a more specialised role in the assembly of the formate-dependent nitrite reductase.  相似文献   

20.
The cytochromebc complexes of the electron transport chain from a wide variety of organisms generate an electrochemical proton gradient which is used for the synthesis of ATP. Proton translocation studies with radiolabeled N,N-dicyclohexylcarbodiimide (DCCD), the well-established carboxyl-modifying reagent, inhibited proton-translocation 50–70% with minimal effect on electron transfer in the cytochromebc 1 and cytochromebf complexes reconstituted into liposomes. Subsequent binding studies with cytochromebc 1 and cytochromebf complexes indicate that DCCD specifically binds to the subunitb and subunitb 6, respectively, in a time and concentration dependent manner. Further analyses of the results with cyanogen bromide and protease digestion suggest that the probable site of DCCD binding is aspartate 160 of yeast cytochromeb and aspartate 155 or glutamate 166 of spinach cytochromeb 6. Moreover, similar inhibition of proton translocating activity and binding to cytochromeb and cytochromeb 6 were noticed with N-cyclo-N-(4-dimethylamino-napthyl)carbodiimide (NCD-4), a fluorescent analogue of DCCD. The spin-label quenching experiments provide further evidence that the binding site for NCD-4 on helix cd of both cytochromeb and cytochromeb 6 is localized near the surface of the membrane but shielded from the external medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号