首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yu Q  Shan Z  Ni K  Qian SY 《Free radical research》2008,42(5):442-455
Gamma-linolenic acid (GLA) has been reported as a potential anti-cancer and anti-inflammatory agent and has received substantial attention in cancer care research. One of the many proposed mechanisms for GLA biological activity is free radical-mediated lipid peroxidation. However, no direct evidence has been obtained for the formation of GLA-derived radicals. In this study, a combination of LC/ESR and LC/MS was used with alpha-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN) to profile the carbon-centred radicals that are generated in lipoxygenase-catalysed GLA peroxidation. A total of four classes of GLA-derived radicals were characterized including GLA-alkyl, epoxyallylic, dihydroxyallylic radicals and a variety of carbon-centred radicals stemming from the beta-scissions of GLA-alkoxyl radicals. By means of an internal standard in LC/MS, one also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The results provided a good starting point for ongoing research in defining the possible biological effects of radicals generated from GLA peroxidation.  相似文献   

2.
With the combined techniques of on-line liquid chromatography/electron spin resonance (LC/ESR) and on-line liquid chromatography/mass spectrometry (LC/MS), we have previously characterized all classes of lipid-derived carbon-centered radicals (*Ld) formed from omega-6 polyunsaturated fatty acids (PUFAs: linoleic acid and arachidonic acid). In the present study, the carbon-centered radicals formed from two omega-3 PUFAs (linolenic acid and docosahexaenoic acid) resulting from their reactions with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butylnitrone (POBN) were investigated using the combination of LC/ESR and LC/MS techniques. A total of 16 POBN trapped carbon-centered radicals formed from the peroxidation of linolenic acid and 11 formed from the peroxidation of docosahexaenoic acid were detected by LC/ESR, identified by LC/MS, and structurally confirmed by tandem mass analysis (MS/MS). The on-line ESR chromatograms and MS chromatograms obtained from two omega-3 PUFAs closely resembled each other not only because the four major beta-scission products, including an ethyl radical and three isomeric pentenyl radicals, were formed from each PUFA, but also because isomeric POBN adducts of lipid dihydroxyallylic radicals from both PUFAs had almost identical chromatographic retention times.  相似文献   

3.
Using the combined techniques of on-line high performance liquid chromatography/electron spin resonance (LC/ESR) and mass spectrometry (MS), we previously identified spin-trapped adducts of all expected carbon-centered lipid-derived radicals ((*)L(d)) formed in linoleic acid peroxidation. In the present study, spin trapped lipid-derived carbon-centered radicals formed from the reactions of two omega-6 polyunsaturated fatty acids (PUFAs: linoleic and arachidonic acids) with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butyl nitrone (POBN) were identified using a combination of LC/ESR and LC/MS. All expected lipid-derived carbon-centered radicals in lipoxygenase-dependent peroxidations of linoleic acid and arachidonic acid were detected and identified by the combination of LC/ESR and LC/MS with confirmation by tandem mass spectrometry (MS/MS). The five classes of (*)L(d) formed from both omega-6 PUFAs including lipid alkyl radicals (L(*)), epoxyallyic radicals (OL(*)), dihydroxyallyic radicals ((*)L(OH)(2)), and a variety of R(*) and (*)RCOOH from beta-scission of lipid alkoxyl radicals, gave distinct retention times: POBN/(*)L(OH)(2) approximately 4-6 min, POBN/R(*) and POBN/(*)RCOOH approximately 8-22 min, POBN/L(*) and PBON/OL(*) approximately 25-36 min. The major beta-scission products in peroxidations of omega-6 PUFAs were the pentyl radicals. The ratio of beta-scission products, however, varied significantly depending on pH, [PUFA], as well as [O(2)].  相似文献   

4.
γ-Linolenic acid (GLA) has been reported as a potential anti-cancer and anti-inflammatory agent and has received substantial attention in cancer care research. One of the many proposed mechanisms for GLA biological activity is free radical-mediated lipid peroxidation. However, no direct evidence has been obtained for the formation of GLA-derived radicals. In this study, a combination of LC/ESR and LC/MS was used with α-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN) to profile the carbon-centred radicals that are generated in lipoxygenase-catalysed GLA peroxidation. A total of four classes of GLA-derived radicals were characterized including GLA-alkyl, epoxyallylic, dihydroxyallylic radicals and a variety of carbon-centred radicals stemming from the β-scissions of GLA-alkoxyl radicals. By means of an internal standard in LC/MS, one also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The results provided a good starting point for ongoing research in defining the possible biological effects of radicals generated from GLA peroxidation.  相似文献   

5.
When diaziquone was irradiated with 500 nm visible light, hydroxyl free radicals as well as the diaziquone semiquinone were produced. The diaziquone semiquinone is a stable free radical that exhibits a characteristic 5-line electron spin resonance (ESR) spectrum. Since hydroxyl free radicals are short lived, and not observable by conventional ESR, the nitrone spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) was used to convert hydroxyl radicals into longer lived ESR detectable spin adducts. The formation of hydroxyl radicals was further confirmed by investigating reactions in which hydroxyl radical scavangers, sodium formate and dimethylsulfoxide, compete with the spin traps DMPO or POBN (alpha-(4-Pyridyl-1-oxide)-N- tert-butylnitrone) for hydroxyl free radicals. The products of these scavenging reactions were also trapped with DMPO or POBN. If drug free radicals and hydroxyl free radicals are important in the activity of quinone-containing antitumor agents, AZQ may have a potential in photoirradiation therapy or photodynamic therapy.  相似文献   

6.
The formation of hydroxyl radicals in beta-glucan solutions treated with ascorbic acid and iron(II) was demonstrated by ESR spin trapping based methods. Two different spin traps were tested, namely DMPO which is commonly used to detect hydroxyl radicals, and POBN often used to detect carbon centered radicals. The experiments performed showed that the presence of iron(II) with DMPO led to low DMPO-OH adduct stability and further to DMPO dimerization. The level of hydroxyl radicals formed during the beta-glucan radical mediated degradation was evaluated using two ESR spin trapping methods based on the use POBN together with either 2% (v/v) EtOH or DMSO. The addition of ascorbic acid together with iron(II) in beta-glucan solution led to an immediate maximal production of hydroxyl radicals while the presence of ascorbic acid alone led to a progressive production of radical. Further hydroxyl radicals were found to be formed when iron(II) was added alone in beta-glucan solutions. The viscosity loss observed in the three last mentioned beta-glucan solutions were found to relate with the formation of hydroxyl radicals. These data confirm the involvement of hydroxyl radical in the beta-glucan degradation.  相似文献   

7.
Electron spin resonance (ESR) spectroscopy has been used to investigate free radical generation in rats with acute methanol poisoning. The spin trapping technique was used where a spin trapping agent, alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), reacted with the corresponding alcohol-derived or alcohol-dependent radical to form radical adducts. One radical adduct was detected in both bile and urine samples 2 h after acute methanol poisoning in male Sprague Dawley rats. The hyperfine coupling constants for the radical adduct from [(13)C]-labeled methanol detected in the bile were a(N) = 15.58, a(beta)(H) = 2.81 G, and a(beta)(13C) = 4.53 G, which unambiguously identified this species as POBN/*CH@OH. The same radical adduct was detected in urine. The identification of a methanol-derived radical adduct in samples from bile and urine provided strong direct evidence for the generation of the alcohol-derived radicals during acute intoxication by methanol. Simultaneous administration of the alcohol dehydrogenase inhibitor 4-methylpyrazole and methanol resulted in an increase in the generation of the free radical metabolite detected in the bile. This is the first ESR evidence of methanol-derived free radical generation in an animal model of acute methanol intoxication.  相似文献   

8.
A J Carmichael 《FEBS letters》1990,261(1):165-170
Vanadyl (VO2+) complexed to RNA reacts with hydrogen peroxide in a Fenton-like manner producing hydroxyl radicals (.OH). The hydroxyl radicals can be spin trapped with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) forming the DMPO-OH spin adduct. In addition, in the presence of ethanol the formation of the hydroxyethyl radical adduct of DMPO (DMPO-ETOH) confirms the production of hydroxyl radicals by the RNA/VO2+ complex. When the reaction between the RNA/VO2+ complex and H2O2 is carried out in the presence of the spin trap 2-methyl-2-nitrosopropane (MNP), radicals produced in the reaction of .OH with RNA are trapped. Base hydrolysis of the MNP-RNA adducts (pH 12) followed by a reduction in the pH to pH 7 after hydrolysis is complete, yields an MNP adduct with a well-resolved ESR spectrum identical to the ESR spectrum obtained from analogous experiments with poly U. The ESR spectrum consists of a triplet of sextets (aN = 1.48 mT, a beta N = 0.25 mT and a beta H = 0.14 mT), indicating that the unpaired nitroxide electron interacts with the nuclei of a beta-nitrogen and beta-hydrogen. The results suggest that the .OH generated in the RNA/VO2+ reaction with H2O2 add to the C(5) carbon of uracil forming a C(6) carbon centered radical. This radical is subsequently spin trapped by MNP.  相似文献   

9.
Traumatic brain injury (TBI) is one of the important causes of mortality and morbidity. The pathogenesis of the underlying brain dysfunction is poorly understood. Recent data have suggested that oxygen free radicals play a key role in the primary and secondary processes of acute TBI. We report direct electron spin resonance (ESR) evidence of hydroxyl (·OH) radical generation in closed-head injury of rats. Moderate brain concussion was produced by controlled and reproducible mechanical, fixed, closed-head injury. A cortical cup was placed over one cerebral hemisphere within 20 min of the concussion, perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent pyridyl-N-oxide-tert-butyl nitrone (POBN, 100 mM), and superfusate samples collected at 10 min intervals for a duration up to 130 min post brain trauma. In addition, POBN was administered systematically (50 mg/kg body wt.) 10 min pretrauma and 20 min posttrauma to improve our ability to detect free radicals. ESR analysis of the superfusate samples revealed six line spectra (N = 15.4 and βH = 2.5 G) characteristic of POBN-OH radical adducts, the intensity of which peaked 40 min posttrauma. The signal was undetectable after 120 min. Administration of -phenyl-tert-butyl-nitrone (PBN), a spin adduct forming agent systemically (100 mg/kg body wt. IP 10 min prior to concussion) alone or along with topical PBN (100 mM PBN in aCSF),6significantly (P< 0.001) attenuated the ESR signal, suggesting its possible role in the treatment of TBI.  相似文献   

10.
Nonstereospecific addition of free radicals to chiral nitrones yields cis/trans diastereoisomeric nitroxides often displaying different electron spin resonance (ESR) characteristics. Glutathione peroxidase-glutathione (GPx-GSH) reaction was applied to reduce the superoxide adducts (nitrone/*OOH) to the corresponding hydroxyl radical (HO*) adducts (nitrone/*OH) of two nitrones increasingly used in biological spin trapping, namely 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide, and of 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DIPPMPO), a sterically hindered DEPMPO analogue. The method offered improved conditions to record highly resolved ESR spectra and by accurate simulation of line asymmetry we obtained clear evidence for the existence of previously unrecognized isomer pairs of cis- and trans-[DEPMPO/*OH] and [DIPPMPO/*OH]. Additional nitrone/*OH generation methods were used, i.e. photolysis of hydrogen peroxide and the Fenton reaction. We developed a kinetic model involving first- and second-order decay and a secondary conversion of trans to cis isomer to fully account for the strongly configuration-dependent behavior of nitrone/*OH. In the reductive system and, to a lower extent, in the Fenton or photolytic systems cis-nitrone/*OH was the more stable diastereoisomer. In various biologically relevant milieu, we found that the cis:trans-nitrone/*OH ratio determined right after the spin adduct formation significantly differed upon the GPx-GSH vs (Fenton or photolytic) systems of formation. This new mechanistic ESR index consistently showed for all nitrones that nitrone/*OH signals detected in the postischemic effluents of ischemic isolated rat livers are the reduction products of primary nitrone/*OOH. Thus, ESR deconvolution of cis/trans diastereoisomers is of great interest in the study of HO* formation in biological systems.  相似文献   

11.
We report on the development of the first member of a new family of EPR spin-trapping agents designed to trap radicals at a predetermined depth within biological membranes. By analogy to the use of nitroxide spin labels to 'report' on the environment at specific depths within biological membranes, we set out to prepare similar reporter molecules, but with a nitrone in place of the nitroxide function. The prototype compounds were tested in a model system consisting of large unilamellar vesicles exposed to a copper-dependent radical generating system. This entailed the reduction of tert-butylhydroperoxide to the tert-butoxyl radical ((t)BuO(.-)) by a membrane-permeable Cu(I) complex, which was generated in situ by reduction of the Cu(II) complex by ascorbate. To assist in the identification of the radicals detected, preliminary studies were performed in methanolic solution, where the major radical trapped was shown to be (.-)CH(2)OH, resulting from H-atom abstraction from the alcohol by (t)BuO(.-). This conclusion was shown to be in agreement with predictions based on chemical kinetics, which were then used to support the proposal that the primary species trapped in the lipid vesicles were radicals derived from membrane fatty acids. This molecule represents the first of a new generation of spin traps which, through modification, can be used to position the radical-trapping nitrone moiety at chosen depths within biological membranes.  相似文献   

12.
The previously reported combination of an on-line high-performance liquid chromatography (LC)/electron spin resonance (ESR) system with mass spectrometric analysis (MS) created a unique technique to identify a variety of lipid-derived radicals ((.)L(d)) formed from in vitro lipid peroxidation (Iwahashi et al. [20]). To improve the sensitivity, resolution, and reliability of this method for in vitro and in vivo studies, we have investigated the effects of mobile phase pH, modifiers, and columns on the chromatographic separation of linoleic acid-derived radical adducts. Using tetrahydrofuran (THF) and 0.1% glacial acetic acid (HOAc) in an H(2)O/acetonitrile (ACN) mobile phase greatly increased the resolution and retention reproducibility of lipid radical adducts in LC/ESR. In addition, these modifications allowed the elimination of an ESR tuning problem and the synchronization of UV and ESR detection of radical adducts in on-line LC/ESR, neither of which had been possible previously. Analyte purity was therefore increased, thus increasing the reliability of radical detection via on-line LC/ESR as well as radical identification via MS analysis. For the first time, POBN adducts of linoleic carbon-centered pentadienyl radicals (L(.)) were detected and identified. The optimization of chromatography in the LC/ESR and MS combination provided a reliable and sensitive way for the detection and identification of expected radical adducts in vitro and in vivo.  相似文献   

13.
ω-6和ω-3类多不饱和脂肪酸是两种人体所需的重要营养物质。人体内的很多生理病理过程均涉及到这些多不饱和脂肪酸,以及它们在环氧合酶(cyclooxygenase,COX)和脂氧合酶(lipoxygenase,LOX)催化下产生的过氧化代谢物。环氧合酶和脂氧合酶催化的多不饱和脂肪酸的过氧化是复杂的生化过程,会产生一系列的自由基产物。这些自由基产物又会与蛋白质、DNA和RNA结合,从而导致很多生理功能的改变。然而一直以来,缺乏合适的分析方法来有效分离和鉴定这些自由基产物,限制了人们对环氧合酶和脂氧合酶,以及多不饱和脂肪酸的过氧化在生理作用方面的研究。直到最近,才出现了对COX/LOX催化产生的活泼自由基定性和定量分析的报道。这里将对一种可以用来鉴定体外脂类过氧化产生的自由基产物的自旋捕捉-LC/ESR/MS联用技术的发展与改进过程进行综述。这种新颖的LC/ESR/MS联用技术首次使得直接检测多不饱和脂肪酸代谢产生的自由基成为可能,这对自由基的生理学作用研究是一个重大突破,为人们在多不饱和脂肪酸的生理作用以及环氧合酶和脂氧合酶催化的脂质过氧化方面的研究带来了极大便利。  相似文献   

14.
Cadmium (Cd) is a known industrial and environmental pollutant. In the present work, an in vivo spin-trapping technique was used in conjunction with electron spin resonance (ESR) spectroscopy to investigate free radical generation in rats following administration of cadmium chloride (CdCl2, 40 micromol/kg) and the spin trapping agent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN, 1 g/kg). In Cd-treated rats, POBN radical adducts were formed in the liver, were excreted into the bile, and exhibited an ESR spectrum consistent with a carbon-centered radical species probably derived from endogenous lipids. Isotope substitution of dimethyl sulfoxide [(CH3)2SO] with 13C demonstrated methyl radical formation (POBN/*13CH3). This adduct indicated the production of hydroxyl radical, which reacted with [(13CH3)2SO] to form *13CH3, which then reacted with POBN to form POBN/*13CH3. Depletion of hepatic glutathione by diethyl maleate significantly increased free radical production, whereas inactivation of Kupffer cells by gadolinium chloride and chelation of iron by desferal inhibited it. Treatment with the xanthine oxidase inhibitor allopurinol, the catalase inhibitor aminobenzotriazole, or the cytochrome P450 inhibitor 3-amino-1,2,4-triazole had no effect. This is the first study to show Cd generation of reactive oxygen- and carbon-centered radical species by involvement of both iron mediation through iron-catalyzed reactions and activation of Kupffer cells, the resident liver macrophages.  相似文献   

15.
Electron paramagnetic resonance (EPR) spin trapping was used to detect lipid-derived free radicals generated by iron-induced oxidative stress in intact cells. Using the spin trap alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN), carbon-centered radical adducts were detected. These lipid-derived free radicals were formed during incubation of ferrous iron with U937 cells that were enriched with docosahexaenoic acid (22:6n-3). The EPR spectra exhibited apparent hyperfine splittings characteristic of a POBN/alkyl radical, aN = 15.63 +/- 0.06 G and aH = 2.66 +/- 0.03 G, generated as a result of beta-scission of alkoxyl radicals. Spin adduct formation depended on the FeSO4 content of the incubation medium and the number of 22:6-enriched cells present; when the cells were enriched with oleic acid (18:1n-9), spin adducts were not detected. This is the first direct demonstration, using EPR, of a lipid-derived radical formed in intact cells in response to oxidant stress.  相似文献   

16.
The ultimate goal of in vivo electron spin resonance (ESR) spin trapping is to provide a window to the characterization and quantification of free radicals with time within living organisms. However, the practical application of in vivo ESR to systems involving reactive oxygen radicals has proven challenging. Some of these limitations relate to instrument sensitivity and particularly to the relative stability of these radicals and their nitrone adducts, as well as toxicity limitations with dosing. Our aim here is to review the strengths and weaknesses of both traditional and in vivo ESR spin trapping and to describe new approaches that couple the strengths of spin trapping with methodologies that promise to overcome some of the problems, in particular that of radical adduct decomposition. The new, complementary techniques include: (i) NMR spin trapping, which monitors new NMR lines resulting from diamagnetic products of radical spin adduct degradation and reduction, (ii) detection of *NO by ESR with dithiocarbamate: Fe(II) "spin trap-like" complexes, (iii) MRI spin trapping, which images the dithiocarbamate: Fe(II)-NO complexes by proton relaxation contrast enhancement, and (iv) the use of ESR to follow the reactions of sulfhydryl groups with dithiol biradical spin labels to form "thiol spin label adducts," for monitoring intracellular redox states of glutathione and other thiols. Although some of these approaches are in their infancy, they show promise of adding to the arsenal of techniques to measure and possibly "image" oxidative stress in living organisms in real time.  相似文献   

17.
The detection of protein free radicals using the specific free radical reactivity of nitrone spin traps in conjunction with nitrone-antibody sensitivity and specificity greatly expands the utility of the spin trapping technique, which is no longer dependent on the quantum mechanical electron spin resonance (ESR). The specificity of the reactions of nitrone spin traps with free radicals has already made spin trapping with ESR detection the most universal, specific tool for the detection of free radicals in biological systems. Now the development of an immunoassay for the nitrone adducts of protein radicals brings the power of immunological techniques to bear on free radical biology. Polyclonal antibodies have now been developed that bind to protein adducts of the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In initial studies, anti-DMPO was used to detect DMPO protein adducts produced on myoglobin and hemoglobin resulting from self-peroxidation by H2O2. These investigations demonstrated that myoglobin forms the predominant detectable protein radical in rat heart supernatant, and hemoglobin radicals form inside red blood cells. In time, all of the immunological techniques based on antibody-nitrone binding should become available for free radical detection in a wide variety of biological systems.  相似文献   

18.
Short-lived free radicals formed in the reaction of 11 substrates and radiolytically produced hydroxyl radicals were trapped successfully with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) in dilute aqueous solution. The in situ radiolysis steady-state ESR spectra of the spin adducts were analyzed to determine accurate ESR parameters for these spin adducts in a uniform environment. Parent alkyl radicals include methyl, ethyl, 1-propyl and 2-propyl (1-methylethyl). Hydroxyalkyl parent radicals were hydroxymethyl, hydroxyethyl, 2-hydroxy-2-propyl (1-methyl-1-hydroxyethyl), 1-hydroxypropyl and 2-hydroxy-2-methylpropyl. Carboxyl radical (carbon dioxide anion, formate radical) and sulfite anion radical were the sigma radicals studied. The DMPO spin adduct of 1-propyl was identified for the first time. For most spin adducts, g factors were also determined for the first time. In DMPO spin adducts of hydroxyalkyl radicals, nitrogen and C(2)-proton hyperfine coupling constants are smaller than those of alkyl radical adducts; the hydroxyalkyl spin adducts possess larger g values than their unsubstituted counterparts. These changes are ascribed to the spread of pi conjugation to include the hydroxyl group. Strong evidence of spin addend-aminoxyl group interaction can be seen in the asymmetrical line shapes in the hydroxyethyl and the hydroxypropyl spin adducts.  相似文献   

19.
Traumatic brain injury (TBI) is one of the important causes of mortality and morbidity. The pathogenesis of the underlying brain dysfunction is poorly understood. Recent data have suggested that oxygen free radicals play a key role in the primary and secondary processes of acute TBI. We report direct electron spin resonance (ESR) evidence of hydroxyl (·OH) radical generation in closed-head injury of rats. Moderate brain concussion was produced by controlled and reproducible mechanical, fixed, closed-head injury. A cortical cup was placed over one cerebral hemisphere within 20 min of the concussion, perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent pyridyl-N-oxide-tert-butyl nitrone (POBN, 100 mM), and superfusate samples collected at 10 min intervals for a duration up to 130 min post brain trauma. In addition, POBN was administered systematically (50 mg/kg body wt.) 10 min pretrauma and 20 min posttrauma to improve our ability to detect free radicals. ESR analysis of the superfusate samples revealed six line spectra (αN = 15.4 and αβH = 2.5 G) characteristic of POBN-OH radical adducts, the intensity of which peaked 40 min posttrauma. The signal was undetectable after 120 min. Administration of α-phenyl-tert-butyl-nitrone (PBN), a spin adduct forming agent systemically (100 mg/kg body wt. IP 10 min prior to concussion) alone or along with topical PBN (100 mM PBN in aCSF),6significantly (P< 0.001) attenuated the ESR signal, suggesting its possible role in the treatment of TBI.  相似文献   

20.
Aflatoxin B1 (AFB1) is a potent hepatocarcinogen. We have recently detected [via electron spin resonance (ESR) spectroscopy] free radicals in vivo in rat bile following AFB1 metabolism using the spin trapping [alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (4-POBN)] technique. The aim of the present study was to identify the trapped free radical intermediates from the in vivo hepatic metabolism of AFB1. Rats were treated simultaneously with AFB1 (3 mg/kg i.p.) and the spin trapping agent 4-POBN (1 g/kg i.p.), and bile was collected over a period of 1 h at 20 min intervals. On-line high performance liquid chromatography (HPLC) coupled to ESR was used to identify an arachidonic acid-derived radical adduct of 4-POBN in rat bile, and a methyl adduct of 4-POBN from the reaction of hydroxyl radicals with carbon-13-labeled dimethyl sulfoxide ((13)C-DMSO). The effect of metabolic inhibitors, such as desferoxamine mesylate (DFO), an iron chelator, 2-dimethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF) 525A, a cytochrome P-450 inhibitor, and gadolinium chloride (GdCl(3)), a Kupffer cell inactivator, on in vivo aflatoxin-induced free radical formation were also studied. It was found that there was a significant decrease in radical formation as a result of DFO, SKF525A and GdCl(3) inhibition. Trapped 4-POBN radical adducts were also detected in rat bile following the in vivo metabolism of aflatoxin-M1, one of the hydroxylated metabolites of AFB1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号