首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on non-competitive binding interactions we suggested that mu and delta receptors associate as a mu/delta receptor complex in rat brain. We hypothesized that the same non-competitive binding interactions observed in rat brain will be seen in CHO cells that co-express mu and delta receptors, but not in cells that express just mu or delta receptors. We used CHO cells expressing the cloned human mu receptor, cloned human delta receptor, or cloned mouse delta/human mu ("dimer cell"). Cell membranes were prepared from intact cells pretreated with 100nM SUPERFIT. [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding assays followed published procedures. SUPERFIT, a delta-selective irreversible ligand, decreased [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to delta receptors by approximately 75% and to mu receptors by approximately 50% in dimer cells. SUPERFIT treatment did not decrease [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to mu cells. The IC(50) values observed in SUPERFIT-treated dimer cells were: [d-Pen(2),d-Pen(5)]enkephalin (1820nM) and morphine (171nM). Saturation binding experiments with SUPERFIT-treated dimer cells showed that [d-Pen(2),d-Pen(5)]enkephalin (5000nM) was a competitive inhibitor. In contrast, morphine (1000nM) lowered the B(max) from 1944fmol/mg to 1276fmol/mg protein (35% decrease). Both [d-Pen(2),d-Pen(5)]enkephalin and morphine competitively inhibited [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to SUPERFIT-treated mu cells. The results indicate that the mu-delta opioid receptor complex defined on the basis of non-competitive binding interactions in rat brain over 20 years ago likely occurs as a consequence of the formation of mu-delta heterodimers. SUPERFIT-treated dimer cells may provide a useful model to study the properties of mu-delta heterodimers.  相似文献   

2.
This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors.  相似文献   

3.
There is evidence to indicate that opioid compounds with mixed mu agonist/delta antagonist properties are analgesics with low propensity to produce tolerance and physical dependence. A chimeric peptide containing the potent and selective mu agonist H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA) (Dmt=2',6'-dimethyltyrosine) and the potent and selective delta antagonist H-Tyr-TicPsi[CH2-NH]Cha-Phe-OH (TICP[Psi]) (Cha=cyclohexylalanine), connected 'tail-to-tail' via a short linker, was synthesized using a combination of solid-phase and solution techniques. The resulting peptide, H-Dmt-->D-Arg-->Phe-->Lys-NH-CH2-CH2-NH-Phe<--Cha[NH-CH2]PsiTic<--Tyr-H, showed the expected mu agonist/delta antagonist profile in the guinea-pig ileum and mouse vas deferens assays. Its mu and delta receptor binding affinities were in the low nanomolar range, as determined in rat brain membrane binding assays.  相似文献   

4.
Iodinated human beta-endorphin was affinity-cross-linked to opioid receptors present in membrane preparations from bovine frontal cortex, bovine striatum, guinea pig whole brain, and rat thalamus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography revealed covalently labeled peptides of 65, 53, 41, and 38 kilodaltons (kDa). The 65- and 38-kDa peptides were present in all four tissues. The 41-kDa peptide was seen only in bovine caudate and guinea pig whole brain while the 53-kDa peptide was absent in rat thalamus. All four labeled peptides were constituents of opioid receptors since their labeling was fully suppressed by the presence of excess opiates, such as bremazocine, during binding. The distribution and levels of the labeled species in the brain tissues examined and, in earlier work, in the neuroblastoma X glioma NG 108-15 cell line suggested that the 65-kDa peptide is a binding component of mu receptors while the 53-kDa peptide is a binding subunit of delta receptors. This result was strongly supported by the finding that the labeling of the 65-kDa peptide is selectively reduced by the presence of the highly mu-selective ligand Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (DAMGE) during binding, while while the labeling of the 53-kDa peptide is selectively reduced or eliminated by the highly mu-selective ligand [D-Pen2, D-Pen5]enkephalin (DPDPE). The labeling of the 41- and 38-kDa bands was reduced by either DAMGE or DPDPE. The relationship of these lower molecular weight opioid-binding peptides to mu and delta receptors is not understood. Several possible explanations are presented.  相似文献   

5.
Mu and delta opioid receptors (MORs and DORs) were co-expressed as fusion proteins between a receptor and a pertussis insensitive mutant Gαi/o protein in human embryonic kidney 293 cells. Signalling efficiency was then monitored following inactivation of endogenous Gαi/o proteins by pertussis toxin. Co-expression resulted in increased delta opioid signalling which was insensitive to the mu specific antagonist d -Phe-Cys-Tyr- d -Trp-Arg-Thr-Pen-Thr-NH2. Under these conditions, mu opioid signalling was also increased and insensitive to the delta specific antagonist Tic-deltorphin. In this latter case, however, no G protein activation was observed in the presence of the delta specific inverse agonist N , N (CH3)2-Dmt-Tic-NH2. When a MOR fused to a non-functional Gα subunit was co-expressed with the DOR-Gα protein fusion, delta opioid signalling was not affected whereas mu opioid signalling was restored. Altogether our results suggest that increased delta opioid signalling is due to enhanced DOR coupling to its tethered Gα subunit. On the other hand, our data indicate that increased mu opioid signalling requires an active conformation of the DOR and also results in activation of the Gα subunit fused the DOR.  相似文献   

6.
Identification of the molecular determinants of recognition common to all three opioid receptors embedded in a single three-dimensional (3D) non-specific recognition pharmacophore has been carried out. The working hypothesis that underlies the computational study reported here is that ligands that bind with significant affinity to all three cloned opioid receptors, delta, mu, and kappa, but with different combinations of activation and inhibition properties at these receptors, could be promising behaviorally selective analgesics with diminished side effects. The study presented here represents the first step towards the rational design of such therapeutic agents. The common 3D pharmacophore developed for recognition of delta, mu, and kappa opioid receptors was based on the receptor affinities determined for 23 different opioid ligands that display no specificity for any of the receptor subtypes. The pharmacophore centers identified are a protonated amine, two hydrophobic groups, and the centroid of an aromatic group in a geometric arrangement common to all 23, non-specific, opioid ligands studied. Using this three-dimensional pharmacophore as a query for searching 3D structural databases, novel compounds potentially involved in non-specific recognition of delta, mu, and kappa opioid receptors were retrieved. These compounds can be valuable candidates for novel behaviorally selective analgesics with diminished or no side effects, and thus with potential therapeutic usefulness.  相似文献   

7.
Heroin produced antinociception in the tail flick test through mu receptors in the brain of ICR and CD-1 mice, a response inhibited by 3-O-methylnaltrexone. Tolerance to morphine was produced by subcutaneous morphine pellet implantation. By the third day, the heroin response was produced through delta opioid receptors. The response was inhibited by simultaneous intracerebroventricular (i.c. v.) administration of naltrindole, a delta opioid receptor antagonist. More specifically, delta1 rather than delta2 receptors were involved because 7-benzylidenenaltrexone, a delta1 receptor antagonist, inhibited but naltriben, a delta2 antagonist, did not. Also, antinociception produced by i.c.v. heroin was inhibited by intrathecal administration of bicuculline and picrotoxin consistent with the concept that delta1 receptors in the brain mediated the antinociceptive response through descending neuronal pathways to the spinal cord to activate GABAA and GABAB receptors rather than spinal alpha2-adrenergic and serotonergic receptors activated originally by the mu agonist action in naive mice. The mu response of 6-monoacetylmorphine, a metabolite of heroin, was changed by morphine pellet implantation to a delta2 response (inhibited by naltriben but not 7-benzylidenenaltrexone). The agonist action of morphine in these morphine-tolerant mice remained mu. Thus, the opioid receptor selectivity of heroin and 6-monoacetylmorphine in the brain is changed by production of tolerance to morphine. Such a change explains how morphine tolerant mice are not cross-tolerant to heroin.  相似文献   

8.
[3H]H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ([3H]CTOP), a potent and highly selective mu opioid antagonist, was used to localize the mu receptors in rat brain by light microscopic autoradiography. Radioligand binding studies with [3H]CTOP using slide-mounted tissue sections of rat brain produced a Kd value of 1.1 nM with a Bmax value of 79.1 fmol/mg protein. Mu opioid agonists and antagonists inhibited [3H]CTOP binding with high affinity (IC50 values of 0.2-2.4 nM), while the delta agonist DPDPE, delta antagonist ICI 174,864, and kappa agonist U 69, 593 were very weak inhibitors of [3H]CTOP binding (IC50 values of 234-3631 nM). Light microscopic autoradiography of [3H]CTOP binding sites revealed regions of high density (nucleus of the solitary tract, clusters in the caudate-putamen, interpeduncular nucleus, superior and inferior colliculus, subiculum, substantia nigra zona reticulata, medial geniculate, locus coeruleus and dorsal motor nucleus of the vagus) and regions of moderate labeling (areas outside of clusters in the caudate-putamen, cingulate cortex, claustrum and nucleus accumbens). The cerebral cortex (parietal) showed a low density of [3H]CTOP binding.  相似文献   

9.
The ability of blood vessels to constrict to a given stimulus is significantly increased in spontaneously hypertensive rats (SHR). Such an increase in the vasoconstrictor responsiveness contributes to the elevated peripheral vascular resistance noted in SHR. The present review discusses evidence in support of the concept that an increased release of norepinephrine during sympathetic nerve stimulation may contribute to the increase in vasoconstrictor responsiveness and, subsequently, to an increase in vascular resistance in the SHR. Several studies suggest that the exocytotic release of norepinephrine from sympathetic nerves may be altered by endogenously occurring neurohumoral substances which produce their effects by interacting with presynaptic receptors located on postganglionic sympathetic nerves. Therefore, it is postulated that alterations in presynaptic regulation of norepinephrine release, resulting from changes in the functioning of one or more of these presynaptic receptors, may lead to a greater release of norepinephrine in the SHR. This review summarizes the results of studies evaluating presynaptic receptor mechanisms and norepinephrine release in the SHR. These studies suggest that norepinephrine release during sympathetic nerve stimulation is greater in the SHR and that alterations in some of the presynaptic receptor mechanisms may be responsible for this phenomenon.  相似文献   

10.
The discovery of the prototype delta opioid antagonists TIPP (H-Tyr-Tic-Phe-Phe-OH) and TIP (H-Tyr-Tic-Phe-OH) in 1992 was followed by extensive structure-activity relationship studies, leading to the development of analogues that are of interest as pharmacological tools or as potential therapeutic agents. Stable TIPP-derived delta opioid antagonists with subnanomolar delta receptor binding affinity and extraordinary delta receptor selectivity include TIPP[Psi] (H-Tyr-TicPsi[CH(2)NH]Phe-Phe-OH] and TICP[Psi] (H-Tyr-TicPsi[CH(2)NH]Cha-Phe-OH); Cha: cyclohexylalanine), which are widely used in opioid research. Theoretical conformational analyses in conjunction with the pharmacological characterization of conformationally constrained TIPP analogues led to a definitive model of the receptor-bound conformation of H-Tyr-Tic-(Phe-Phe)-OH-related delta opioid antagonists, which is characterized by all-trans peptide bonds. Further structure-activity studies revealed that the delta antagonist vs delta agonist behavior of TIP(P)-derived compounds depended on very subtle structural differences in diverse locations of the molecule and suggested a delta receptor model involving a number of different inactive receptor conformations. A further outcome of these studies was the identification of a new class of potent and very selective dipeptide delta agonists of the general formula H-Tyr-Tic-NH-X (X = arylalkyl), which are of interest for drug development because of their low molecular weight and lipophilic character. Most interestingly, TIPP analogues containing a C-terminal carboxamide group displayed a mixed mu agonist/delta antagonist profile, and thus were expected to be analgesics with a low propensity to produce tolerance and physical dependence. This turned out to be the case with the TIPP-derived mu agonist/delta antagonist DIPP-NH(2)[Psi] (H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2)); Dmt: 2',6'- dimethyltyrosine).  相似文献   

11.
The apparent densities of brain somatostatin (SRIF) receptor sites were compared in adult spontaneously hypertensive rats (SH) and their normotensive genetic counterparts (Wistar-Kyoto; WKY) using quantitative receptor autoradiography. Globally, the distribution of brain [125I][Tyr0, D-Trp8]SRIF14 binding sites was very similar in both strains. However, apparent densities of specific labeling were either higher (subfornical organ, 3.2 x; locus coeruleus, 1.9 x; lateroanterior hypothalamic nucleus, 1.3 x) or lower (basolateral amygdaloid nucleus, 0.8 x; spinal trigeminal sensory nucleus, 0.6 x) in SH than WKY rats in areas especially relevant to CNS cardiovascular integration. This provides further evidence for the possible involvement of brain SRIF neurons in cardiovascular regulation.  相似文献   

12.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

13.
Inotropic response to β-adrenergic stimulation of the myocardium is decreased in hypertension. A biochemical basis for this decrease was provided by the observation that the number of β-adrenergic receptors — as reflected in specific [3H]dihydroalprenolol binding — was diminished in the myocardium of spontaneously hypertensive rats without a change in the affinity of dihydroalprenolol for the binding sites or in the capacity of isoproterenol to displace dihydroalprenolol. The decline in β-adrenergic receptor numbers is not secondary to blood pressure elevation and may be related to increased sympathetic drive in spontaneously hypertensive rats.  相似文献   

14.
A Gulati  S Rebello 《Life sciences》1991,48(12):1207-1215
The binding of [125I] sarafotoxin 6b (SRT 6b) and [125I] endothelin-1 (ET-1) to endothelin (ET) receptors of neuronal membranes prepared from cerebral cortex and ventrolateral medulla of 8 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. [125I] SRT 6b bound to the membranes of cerebral cortex and ventrolateral medulla at a single high affinity site. The binding of [125I] SRT 6b in the cerebral cortex was found to be similar in SHR and WKY rats. However, in the ventrolateral medulla [125I] SRT 6b binding was found to be significantly lower in SHR as compared to WKY rats. The decreased binding was due to decrease (48%) in the Bmax values in SHR rats as compared to WKY rats. The Kd values were similar in SHR and WKY rats. [125I] ET-1 also bound to the membranes of cerebral cortex and ventrolateral medulla at a single high affinity site. The binding of [125I] ET-1 in the cerebral cortex was found to be similar in SHR and WKY rats. However, in the ventrolateral medulla [125I] ET-1 binding was found to be significantly lower in SHR as compared to WKY rats. The decreased binding was due to 36% decrease in the Bmax values in SHR rats as compared to WKY rats. The Kd values were similar in SHR and WKY rats. It is concluded that the population of ET receptors is less in the ventrolateral medulla of SHR rats and may be contributing to the regulation of blood pressure.  相似文献   

15.
Spontaneously hypertensive rats (SHR), which develop hypertension approximately 10 weeks after birth, are considered to provide a good animal model for human essential hypertension. We report here that the abnormal activation of phospholipase C delta 1 (PLC-delta 1) may be one of the main causes of hypertension. Levels of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol are found to be higher in the aortas of 12-week-old SHR than in age-matched normotensive Wistar-Kyoto rats (WKY), although the levels in the aortas of 7-week-old SHR, which have normal blood pressure, are the same as in WKY. Moreover, PLC activity is also higher in the aortas of 12-week-old SHR. Judging from Western blot analysis and immunoabsorption of PLCs, this activation is found to be due to that of PLC-delta 1. PLC-delta 1 from rat aorta is expressed significantly from 7 to 12 weeks, which correlates with the development of hypertension in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is more markedly activated at low Ca2+ concentration than that of age-matched WKY. These results suggest that the abnormal enhancement of PLC-delta 1 activity is responsible for accumulation of inositol 1,4,5-trisphosphate and diacylglycerol, leading to continuous hypertonicity of vascular smooth muscle in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is significantly higher at low Ca2+ concentration than that of normotensive WKY.  相似文献   

16.
J M Hiller  L Q Fan  E J Simon 《Life sciences》1990,47(24):2225-2230
Guinea pig brain membranes treated with cyanogen bromide (CNBr) demonstrate a loss in the number of mu opioid receptors and a lower binding affinity of delta opioid receptors. These receptor changes are irreversible. Results from ligand protection experiments support the hypothesis that the location of the methionine groups, the sites at which CNBr cleaves peptides, differs between these two types of opioid receptors. Kappa receptors are significantly less sensitive to the action of CNBr than mu or delta receptors.  相似文献   

17.
With the techniques of specific radioimmunoassay and gel filtration it was found that CGRP was distributed in various tissues of normotensive (WKY) and spontaneously hypertensive rats (SHR) with the highest concentration in the lumbar spinal cord (1197 +/- 94.8 pg/mg tissue) and the lowest in the auricle (15.0 +/- 2.1 pg/mg tissue). In comparison with WKY, CGRP concentration in the plasma was decreased and in the abdominal aorta and hypothalamus was increased in SHR. Gel filtration revealed only one major CGRP molecular form in the tissues. In addition, CGRP reduced the mean arterial pressure (MAP) in SHR in a dose-dependent manner. These data suggest that CGRP may play an important role in the pathogenesis of hypertension and its possible therapy.  相似文献   

18.
H N Bhargava  S Das 《Life sciences》1986,39(26):2593-2600
The binding of tritiated ligands for various opiate receptor subtypes to brain membranes prepared from spontaneously hypertensive rats and normotensive Wistar-Kyoto rats was determined. The density (Bmax) or the apparent dissociation constant (Kd) for the binding of the mu-ligand (naltrexone) and delta-ligand (Tyr-D-Ser-Gly-Phe-Leu-Thr) to brain membranes of hypertensive and normotensive rats did not differ. However, the Bmax for the binding of kappa-ligand (ethylketocyclazocine, EKC) to brain membranes after the suppression of mu and delta-sites by 100 nM each of unlabeled D-Ala2-MePhe4-Gly-ol5-enkephalin and D-Ala2-D-Leu5-enkephalin, respectively, was significantly greater in hypertensive rats compared to normotensive rats. The Kd values for the binding of 3H-EKC in the two groups did not differ. The binding of 3H-EKC in brain regions was in the order: hypothalamus greater than midbrain greater than striatum greater than cortex greater than pons + medulla. The increase in the binding of 3H-EKC in the brain of hypertensive rats compared to normotensive rats was due to increased binding in the hypothalamus and cortex. These results provide for the first time evidence of selective proliferation of kappa-opiate receptors in the brain of hypertensive rats, and suggest that brain kappa-opiate receptors may play an important role in the pathophysiology of hypertension.  相似文献   

19.
Recent evidence suggests that the effects of the opioids on gonadotropin release may depend on the endocrine status existing in the experimental animal. In the brain, the effects of the opioids are exerted through the interaction with different classes of opioid receptors (mu, delta, kappa, etc.). Among these, the mu receptors appear to be particularly relevant to the control of gonadotropin secretion. Different groups of experiments have been performed in the rat in order to analyze whether changes of circulating levels of sex steroids may have an impact on the binding characteristics of hypothalamic mu opioid receptors, as evaluated by a receptor binding assay performed on plasma membrane preparations, using [3H]dihydromorphine as a mu ligand. In a first series of experiments, it has been observed that the ontogenesis of hypothalamic mu opioid receptors is different in male and in female rats: the concentration of mu sites, similar in animals of the two sexes at 16 days of age, increases in females, but not in males, between day 16 and day 26 of life. This sexual difference persists in 60-day old animals, when the brain is fully mature. It has also been observed that the pattern of maturation of hypothalamic mu receptors can be reversed by neonatal castration of males and by neonatal testosterone treatment of females. In a second series of experiments, it has been shown that in the hypothalamus of regularly cycling female rats the concentration of mu receptors varies during the different phases of the estrous cycle. In particular, a rather high density of mu sites during diestrus day 2 and the morning of the day of proestrus was found; this is followed by a progressive decline during the afternoon of the day of proestrus and the day of estrus, with a minimum value of the concentration of mu receptors being recorded in the first day of diestrus. These fluctuations seem to be linked to the physiological changes of serum levels of ovarian steroids: in fact, in a third series of experiments, it has been found that the positive feedback effect on LH release, exerted by the treatment of ovariectomized female rats with estrogens plus progesterone, is accompanied by a significant decrease of the concentration of hypothalamic mu opioid receptors; treatments with estrogens alone, able to induce a negative feedback effect on LH secretion, are not associated with modifications of hypothalamic mu receptors. These data seem to indicate that hypothalamic mu receptors may be involved in the positive but not in the negative feedback control of LH secretion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The renal microvasculature was studied in normotensive rats and in rats with spontaneous hypertension. The microvascular pattern was normal in both groups of animals, suggesting normal renin secretion. This may or may not indicate a role for renin in the cause of spontaneous hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号