共查询到20条相似文献,搜索用时 15 毫秒
1.
cis-Chlorobenzene Dihydrodiol Dehydrogenase (TcbB) from Pseudomonas sp. Strain P51, Expressed in Escherichia coli DH5α(pTCB149), Catalyzes Enantioselective Dehydrogenase Reactions 下载免费PDF全文
Henning Raschke Thomas Fleischmann Jan Roelof Van Der Meer Hans-Peter E. Kohler 《Applied microbiology》1999,65(12):5242-5246
cis-Chlorobenzene dihydrodiol dehydrogenase (CDD) from Pseudomonas sp. strain P51, cloned into Escherichia coli DH5α(pTCB149) was able to oxidize cis-dihydrodihydroxy derivatives (cis-dihydrodiols) of dihydronaphthalene, indene, and four para-substituted toluenes to the corresponding catechols. During the incubation of a nonracemic mixture of cis-1,2-indandiol, only the (+)-cis-(1R,2S) enantiomer was oxidized; the (−)-cis-(S,2R) enantiomer remained unchanged. CDD oxidized both enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, but oxidation of the (+)-cis-(1S,2R) enantiomer was delayed until the (−)-cis-(1R,2S) enantiomer was completely depleted. When incubated with nonracemic mixtures of para-substituted cis-toluene dihydrodiols, CDD always oxidized the major enantiomer at a higher rate than the minor enantiomer. When incubated with racemic 1-indanol, CDD enantioselectively transformed the (+)-(1S) enantiomer to 1-indanone. This stereoselective transformation shows that CDD also acted as an alcohol dehydrogenase. Additionally, CDD was able to oxidize (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene, (+)-cis-monochlorobiphenyl dihydrodiols, and (+)-cis-toluene dihydrodiol to the corresponding catechols. 相似文献
2.
Kraiwattanapong J. Motomura K. Ooi T. Kinoshita S. 《World journal of microbiology & biotechnology》1999,15(1):105-109
An alginate lyase named ALYII was purified to homogeneity from Escherichia coli JM109 carrying a recombinant plasmid, pJK26 harbouring the alyII gene from Pseudomonas sp. OS-ALG-9 by column chromatography with DEAE-cellulose, CM-Sephadex C-50, butyl-Toyopearl 650 M and isoelectric focusing. The molecular size of the purified ALYII was estimated to be 79 kDa by SDS-PAGE and its pI was 8.3. The enzyme was most active at pH 7.0 and 30 °C. Its activity was completely inhibited by Hg2+. The enzyme was poly -D-1, 4-mannuronate-specific rather than -D-1, 4-guluronate-specific and it showed a promotion effect in alginate degradation by combination with ALY, an another poly -D-1, 4-mannuronate-specific alginate lyase from the same strain. 相似文献
3.
Plasmid DNA (pDNA) is an emerging experimental vaccine, produced in E. coli, initially targeted for viral diseases. Unlike traditional protein vaccines whose average dose is micrograms, the average dose of pDNA is on the scale of milligrams. Production yields are, therefore, important for the future development of this vaccine. The E. coli strains currently used for pDNA production, JM109 and DH5alpha, are both suitable for production of stable pDNA due to the deletion of recA and endA, however, these two E. coli K strains are sensitive to growth conditions such as high glucose concentration. On the other hand E. coli BL21 is less sensitive to growth conditions than E. coli JM109 or DH5alpha, this strain grows to higher densities and due to its active glyoxylate shunt and anaplerotic pathways is not sensitive to high glucose concentration. This strain is used for recombinant protein production but not for pDNA production because of its inability to produce stable pDNA. To adapt E. coli BL21 for stable pDNA production, the strain was mutated by deleting both recA and endA, and a proper growth and production strategy was developed. Production values, reaching 2 g/L were obtained using glucose as a carbon source. The produced plasmid, which was constructed for HIV clinical study, was found to have identical properties to the plasmid currently produced by E. coli DH5alpha. 相似文献
4.
Purification and characterization of the hydantoin racemase of Pseudomonas sp. strain NS671 expressed in Escherichia coli. 下载免费PDF全文
The hydantoin racemase gene of Pseudomonas sp. strain NS671 had been cloned and expressed in Escherichia coli. Hydantoin racemase was purified from the cell extract of the E. coli strain by phenyl-Sepharose, DEAE-Sephacel, and Sephadex G-200 chromatographies. The purified enzyme had an apparent molecular mass of 32 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By gel filtration, a molecular mass of about 190 kDa was found, suggesting that the native enzyme is a hexamer. The optimal conditions for hydantoin racemase activity were pH 9.5 and a temperature of 45 degrees C. The enzyme activity was slightly stimulated by the addition of not only Mn2+ or Co2+ but also metal-chelating agents, indicating that the enzyme is not a metalloenzyme. On the other hand, Cu2+ and Zn2+ strongly inhibited the enzyme activity. Kinetic studies showed substrate inhibition, and the Vmax values for D- and L-5-(2-methylthioethyl)hydantoin were 35.2 and 79.0 mumol/min/mg of protein, respectively. The purified enzyme did not racemize 5-isopropylhydantoin, whereas the cells of E. coli expressing the enzyme are capable of racemizing it. After incubation of the purified enzyme with 5-isopropylhydantoin, the enzyme no longer showed 5-(2-methylthioethyl)hydantoin-racemizing activity. However, in the presence of 5-(2-methylthioethyl)hydantoin, the purified enzyme racemized 5-isopropylhydantoin completely, suggesting that 5-(2-methylthioethyl)hydantoin protects the enzyme from inactivation by 5-isopropylhydratoin. Thus, we examined the protective effect of various compounds and found that divalent-sulfur-containing compounds (R-S-R' and R-SH) have this protective effect. 相似文献
5.
Methylophaga sp. strain SK1 is a new restricted facultative methanol-oxidizing bacterium that was isolated from seawater. The aim of this study was to characterize the electron carriers involved in the methanol oxidation process in Methylophaga sp. strain SK1. The gene encoding cytochrome c(L) (mxaG) was cloned and the recombinant gene was expressed in Escherichia coli DH5 under strict anaerobic conditions. The recombinant cytochrome c(L) had the same molecular weight and absorption spectra as the wild-type cytochrome c(L) both in the reduced and oxidized forms. The electron flow rate from methanol dehydrogenase (MDH) to the recombinant cytochrome c(L) was similar to that from MDH to the wild-type cytochrome c(L). These results suggest that recombinant cytochrome c(L) acts as a physiological primary electron acceptor for MDH. 相似文献
6.
Sterol 14-demethylase P450 (CYP51) is an essential enzyme for sterol biosynthesis by eukaryotes. We have cloned rat and human CYP51 cDNAs [Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Horiuchi, T., and Yoshida, Y. (1996) J. Biochem. 119, 926-933]. The cloned rat CYP51 cDNA was expressed in Escherichia coli with modification of the N-terminal amino acid sequence, and the expressed protein (CYP51m) was purified to gel-electrophoretic homogenity. The spectrophotometrically determined specific content of CYP51m was 16 nmol/mg protein and the apparent molecular weight was estimated to be 53,000 on SDS-PAGE. Soret peaks of the oxidized and reduced CO-complex of CYP51m were observed at 417 and 447 nm, respectively. The purified CYP51m catalyzed the 14-demethylation of lanosterol and 24,25-dihydrolanosterol upon reconstitution with NADPH-P450 reductase purified from rat liver microsomes. The apparent K(m) and V(max) values for lanosterol were 10.5 microM and 13.9 nmol/min/nmol P450, respectively, and those for 24, 25-dihydrolanosterol were 20.0 microM and 20.0 nmol/min/nmol P450, respectively. The lanosterol demethylase activity of the reconstituted system of CYP51m was inhibited by ketoconazole, itraconazole and fluconazole with apparent IC(50) values of 0.2, 0.7, and 160 microM, respectively. 相似文献
7.
Cloning, sequencing, and expression of the N-acyl-D-mannosamine dehydrogenase gene from Flavobacterium sp. strain 141-8 in Escherichia coli. 总被引:2,自引:1,他引:2 下载免费PDF全文
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum. 相似文献
8.
H Yamamoto-Otake Y Koyama T Horiuchi E Nakano 《Applied and environmental microbiology》1991,57(5):1418-1422
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum. 相似文献
9.
内生菌Pseudomonas sp. G5 phzIR基因的克隆与表达 总被引:2,自引:0,他引:2
假单胞菌菌株G5是分离自香菜(Coriandrum sativumL.)茎内的一株内生菌,经BIOLOG系统分析其底物利用图谱,初步鉴定为桔黄假单胞菌Pseudomonas aurantiaca。大量研究已表明许多革兰氏阴性细菌应用群体感应系统,通过感应扩散性小信号分子―乙酰基高丝氨酸内酯(N-acyl homoserine lactones,AHLs),以种群密度依赖的方式调控基因表达,控制植物相关细菌的多种表型。本研究组合应用AHLs检测菌株Chromobacterium violaceum CV026和薄层层析分析,初步检测出菌株G5可产生几种可检测水平的AHLs信号分子,其中以N-hexanoyl-homoserine lactone(C6-HSL,HHL)为主,迁移率Rf值为0.4。进一步克隆和测序了该菌株中由PhzI和PhzR组成的群体感应quorumsensing系统的编码基因phzIR,并在大肠杆菌中异源表达了AHLs信号分子合成酶基因phzI。序列和系统进化分析表明它们与假单胞菌属其他的phzIR基因有高度同源性和进化上的保守性。 相似文献
10.
M. D. Vollmer U. Schell V. Seibert S. Lakner M. Schlömann 《Applied microbiology and biotechnology》1999,51(5):598-605
The chloromuconate cycloisomerase of Pseudomonas sp. B13 was purified from 3-chlorobenzoate-grown wild-type cells while the chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4) and Pseudomonas sp. P51 (pP51) were purified from Escherichia coli strains expressing the corresponding gene. Kinetic studies were performed with various chloro-, fluoro-, and methylsubstituted
cis,cis-muconates. 2,4-Dichloro-cis,cis-muconate proved to be the best substrate for all three chloromuconate cycloisomerases. Of the three enzymes, TfdD of Ralstonia eutropha JMP134 (pJP4) was most specific, since its specificity constant for 2,4-dichloro-cis,cis-muconate was the highest, while the constants for cis,cis-muconate, 2-chloro- and 2,5-dichloro-cis,cis-muconate were especially poor. The sequence of ClcB of the 3-chlorobenzoate-utilizing strain Pseudomonas sp. B13 was determined and turned out to be identical to that of the corresponding enzyme of pAC27 (though slightly different
from the published sequences). Corresponding to 2-chloro-cis,cis-muconate being a major metabolite of 3-chlorobenzoate degradation, the k
cat/K
m with 2-chloro-cis,cis-muconate was relatively high, while that with the still preferred substrate 2,4-dichloro-cis,cis-muconate was relatively low. This enzyme was thus the least specific and the least active among the three compared enzymes.
TcbD of Pseudomonas sp. P51 (pP51) took an intermediate position with respect to both the degree of specificity and the activity with the preferred
substrate.
Received: 7 August 1998 / Received revision: 24 November 1998 / Accepted: 29 November 1998 相似文献
11.
Fujii T Narikawa T Sumisa F Arisawa A Takeda K Kato J 《Bioscience, biotechnology, and biochemistry》2006,70(6):1379-1385
Our biotransformation using Escherichia coli expressing a cytochrome P450 (CYP) belonging to the CYP153A family from Acinetobacter sp. OC4 produced a great amount of 1-octanol (2,250 mg per liter) from n-octane after 24 h of incubation. This level of production is equivalent to the maximum level previously achieved in biotransformation experiments of alkanes. In addition, the initial production rate of 1-octanol was maintained throughout the entire incubation period. These results indicate that we have achieved the functional and stable expression of a CYP in E. coli for the first time. Further, our biotransformation system showed alpha,omega-diterminal oxidation activity of n-alkanes, and a large amount of 1,8-octanediol (722 mg per liter) was produced from 1-octanol after 24 h of incubation. This is the first report on the bioproduction of alpha,omega-alkanediols from n-alkanes or 1-alkanols. 相似文献
12.
Differences in plasmid retention and expression are studied in both suspended and biofilm cultures of Escherichia coli DH5alpha(PMJR1750). An alternative mathematical model is proposed which allows the determination of plasmid loss probability in both suspended batch and continuously fed biofilm cultures. In our experiments, the average probability of plasmid loss of E. coli DH5alpha(pMJR1750) is 0.0022 in batch culture in the absence of antibiotic selection pressure and inducer. Under the induction of 0.17 MM IPTG, the maximum growth rate of plasmid-bearing cells in suspended batch culture dropped from 0.45 h(-1) to 0.35 h(-1) and the beta-galactosidase concentration reached an experimental maximum of 0.32. pg/cell 4 hours after the initiation of induction. At both 0.34 and 0.51 mM IPTG, growth rates in batch cultures decreased to 0.16 h(-1), about 36% of that without IPTG, and the beta-galactosidase concentration reached an experimental maximum of 0.47 pg/cell 3 hours after induction.In biofilm cultures, both plasmid-bearing and plasmid-free cells in increase with time reaching a plateau after 96 hours n the absence of both the inducer and any antibiotic selection pressure. Average probability of plasmid loss for biofilm-bound E. coli DH5beta(pMJR1750) population was 0.017 without antibiotic selection. Once the inducer IPTG was added, the concentration of plasmid-bearing cells in biofilm dropped dramatically while plasmid-free cell numbers maintained unaffected. The beta-galactosidase concentration reached a maximum in all biofilm experiments 24 hours after induction; they were 0.08, 0.1, and 0.12 pg/cel under 0.17, 0.34, and 0.51 mM IPTG, respectively. (c) 1993 John Wiley & Sons, Inc. 相似文献
13.
Ishiguro M Kaneko S Kuno A Koyama Y Yoshida S Park GG Sakakibara Y Kusakabe I Kobayashi H 《Applied and environmental microbiology》2001,67(4):1601-1606
The nucleotide sequence of the Thermus sp. strain T2 DNA coding for a thermostable alpha-galactosidase was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 474 amino acids (M(r), 53,514). The observed homology between the deduced amino acid sequences of the enzyme and alpha-galactosidase from Thermus brockianus was over 70%. Thermus sp. strain T2 alpha-galactosidase was expressed in its active form in Escherichia coli and purified. Native polyacrylamide gel electrophoresis and gel filtration chromatography data suggest that the enzyme is octameric. The enzyme was most active at 75 degrees C for p-nitrophenyl-alpha-D-galactopyranoside hydrolysis, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C. The enzyme was extremely stable over a broad range of pH (pH 6 to 13) after treatment at 40 degrees C for 1 h. The enzyme acted on the terminal alpha-galactosyl residue, not on the side chain residue, of the galactomanno-oligosaccharides as well as those of yeasts and Mortierella vinacea alpha-galactosidase I. The enzyme has only one Cys residue in the molecule. para-Chloromercuribenzoic acid completely inhibited the enzyme but did not affect the mutant enzyme which contained Ala instead of Cys, indicating that this Cys residue is not responsible for its catalytic function. 相似文献
14.
Rhodococcus sp. NCIMB112038 can utilize naphthalene as its sole carbon and energy source. The gene encoding cis-naphthalene dihydrodiol dehydrogenase (narB) of this strain has been cloned and sequenced. Expression of NCIMB12038 cis-naphthalene dihydrodiol dehydrogenase was demonstrated in Escherichia coli cells. narB encodes a putative protein of 271 amino acids and shares 39% amino acid identity with the cis-naphthalene dihydrodiol dehydrogenase from Pseudomonas putida G7. Comparison of NarB with some putative cis-dihydrodiol dehydrogenases from Rhodococcus species revealed significant differences between these proteins. NarB together with two other proteins forms a new group of cis-dihydrodiol dehydrogenases. 相似文献
15.
Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803 下载免费PDF全文
Antibodies raised against NdhH and NdhB detected these proteins in the thylakoid membrane of Synechocystis sp. strain PCC 6803, but not in a purified cytoplasmic membrane. We conclude that NAD(P)H dehydrogenase is largely, if not exclusively, confined to the thylakoid membrane. 相似文献
16.
Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. 总被引:1,自引:2,他引:1 下载免费PDF全文
Analysis of one of the regions of catabolic plasmid pP51 which encode chlorobenzene metabolism of Pseudomonas sp. strain P51 revealed that the tcbA and tcbB genes for chlorobenzene dioxygenase and dehydrogenase are located on a transposable element, Tn5280. Tn5280 showed the features of a composite bacterial transposon with iso-insertion elements (IS1066 and IS1067) at each end of the transposon oriented in an inverted position. When a 12-kb HindIII fragment of pP51 containing Tn5280 was cloned in the suicide donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida KT2442, Tn5280 was found to transpose into the genome at random and in single copy. The insertion elements IS1066 and IS1067 differed in a single base apir located in the inner inverted repeat and were found to be highly homologous to a class of repetitive elements of Bradyrhizobium japonicum and distantly related to IS630 of Shigella sonnei. The presence of the catabolic genes tcbA and tcbB on Tn5280 suggests a mechanism by which gene clusters can be mobilized as gene cassettes and joined with others to form novel catabolic pathways. 相似文献
17.
Ohmachi T Narita M Kawata M Bizen A Tamura Y Asada Y 《Applied microbiology and biotechnology》2004,65(6):686-693
N-carbamoyl-l-cysteine amidohydrolase (NCC amidohydrolase) was purified and characterized from the crude extract of Escherichia coli in which the gene for NCC amidohydrolase of Pseudomonas sp. strain ON-4a was expressed. The enzyme was purified 58-fold to homogeneity with a yield of 16.1% by three steps of column chromatography. The results of gel filtration on Sephacryl S-300 and SDS-polyacrylamide gel electrophoresis suggested that the enzyme was a tetramer protein of identical 45-kDa subunits. The optimum pH and temperature of the enzyme activity were pH 9.0 and 50°C, respectively. The enzyme required Mn2+ ion for activity expression and was inhibited by EDTA, Hg2+ and sulfhydryl reagents. The enzyme was strictly specific for the l-form of N-carbamoyl-amino acids as substrates and exhibited high activity in the hydrolysis of N-carbamoyl-l-cysteine as substrate. These results suggested that the NCC amidohydrolase is a novel l-carbamoylase, different from the known l-carbamoylases. 相似文献
18.
19.
Escherichia coli containing the Bacillus subtilis glucose dehydrogenase gene on a plasmid (prL7) was used to produce the enzyme in high quantities. Gluc-DH-S was purified from the cell extract by (NH4)2SO4-precipitation, ion-exchange chromatography and Triazine-dye chromatography to a specific activity of 375 U/mg. The enzyme was apparently homogenous on SDS-PAGE with a subunit molecular mass of 31.5 kDa. Investigation of Gluc-DH-S was performed for comparison with the corresponding properties of Gluc-DH-M. The limiting Michaelis constant at pH 8.0 for NAD+ is Ka = 0.11 mM and for D-glucose Kb = 8.7 mM. The dissociation constant for NAD+ is Kia = 17.1 mM. Similar to Gluc-DH-M, Gluc-DH-S is inactivated by dissociation under weak alkaline conditions at pH 9.0. Complete reactivation is attained by readjustment to pH 6.5. Ultraviolet absorption, fluorescence and CD-spectra of native Gluc-DH-S, as well as fluorescence- and CD-backbone-spectra of the dissociated enzyme were nearly identical to the corresponding spectra of Gluc-DH-M. The aromatic CD-spectrum of dissociated Gluc-DH-S was different, representing a residual ellipticity of tryptophyl moieties in the 290-310 nm region. Density gradient centrifugation proved that this behaviour is due to the formation of inactive dimers in equilibrium with monomers after dissociation. In comparison to Gluc-DH-M, the kinetics of inactivation as well as the time-dependent change of fluorescence intensity at pH 9.0 of Gluc-DH-S showed a higher velocity and a changed course of the dissociation process. 相似文献
20.
Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. 总被引:13,自引:0,他引:13
The plasmid pEST1412 contains the genes, pheA and pheB, encoding phenol monooxygenase (PMO) and catechol 1,2-dioxygenase (C12]), respectively. Thse were originally cloned from the plasmid DNA of Pseudomonas sp. EST1001 [Kivisaar et al., Plasmid 24 (1990) 25-36]. Although pheA and pheB are cotranscribed using the promoter sequences derived from Tn4652 and the level of expression of C120 activities from pEST1412 was equal both in Escherichia coli and in Pseudomonas putida, the level of PMO activity measured in the cell-free extracts of E. coli was lower than that in P. putida. The nucleotide sequence of the 2.0-kb PstI-HindIII fragment of pEST1412 carrying pheA was determined. A 1821-bp ORF was found in this DNA. The structural gene (tfdB) encoding 2,4-dichlorophenol hydroxylase from pJP4 has been sequenced [Perkins et al., J. Bacteriol. 172 (1990) 2351-2359]. Comparison of the deduced amino acid sequences of tfdB and pheA revealed highly conserved regions in the protein products of these genes. 相似文献