首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Workman C  Jensen LJ  Jarmer H  Berka R  Gautier L  Nielser HB  Saxild HH  Nielsen C  Brunak S  Knudsen S 《Genome biology》2002,3(9):research0048.1-research004816

Background  

Microarray data are subject to multiple sources of variation, of which biological sources are of interest whereas most others are only confounding. Recent work has identified systematic sources of variation that are intensity-dependent and non-linear in nature. Systematic sources of variation are not limited to the differing properties of the cyanine dyes Cy5 and Cy3 as observed in cDNA arrays, but are the general case for both oligonucleotide microarray (Affymetrix GeneChips) and cDNA microarray data. Current normalization techniques are most often linear and therefore not capable of fully correcting for these effects.  相似文献   

2.

Background  

Recently, a large number of methods for the analysis of microarray data have been proposed but there are few comparisons of their relative performances. By using so-called spike-in experiments, it is possible to characterize the analyzed data and thereby enable comparisons of different analysis methods.  相似文献   

3.
4.
5.
6.
7.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

8.

Background

Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. This novel technique helps us to understand gene regulation as well as gene by gene interactions more systematically. In the microarray experiment, however, many undesirable systematic variations are observed. Even in replicated experiment, some variations are commonly observed. Normalization is the process of removing some sources of variation which affect the measured gene expression levels. Although a number of normalization methods have been proposed, it has been difficult to decide which methods perform best. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization.

Results

In this paper, we use the variability among the replicated slides to compare performance of normalization methods. We also compare normalization methods with regard to bias and mean square error using simulated data.

Conclusions

Our results show that intensity-dependent normalization often performs better than global normalization methods, and that linear and nonlinear normalization methods perform similarly. These conclusions are based on analysis of 36 cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells. Simulation studies confirm our findings.
  相似文献   

9.
New normalization methods for cDNA microarray data   总被引:7,自引:0,他引:7  
MOTIVATION: The focus of this paper is on two new normalization methods for cDNA microarrays. After the image analysis has been performed on a microarray and before differentially expressed genes can be detected, some form of normalization must be applied to the microarrays. Normalization removes biases towards one or other of the fluorescent dyes used to label each mRNA sample allowing for proper evaluation of differential gene expression. RESULTS: The two normalization methods that we present here build on previously described non-linear normalization techniques. We extend these techniques by firstly introducing a normalization method that deals with smooth spatial trends in intensity across microarrays, an important issue that must be dealt with. Secondly we deal with normalization of a new type of cDNA microarray experiment that is coming into prevalence, the small scale specialty or 'boutique' array, where large proportions of the genes on the microarrays are expected to be highly differentially expressed. AVAILABILITY: The normalization methods described in this paper are available via http://www.pi.csiro.au/gena/ in a software suite called tRMA: tools for R Microarray Analysis upon request of the authors. Images and data used in this paper are also available via the same link.  相似文献   

10.
We developed Tilescope, a fully integrated data processing pipeline for analyzing high-density tiling-array data . In a completely automated fashion, Tilescope will normalize signals between channels and across arrays, combine replicate experiments, score each array element, and identify genomic features. The program is designed with a modular, three-tiered architecture, facilitating parallelism, and a graphic user-friendly interface, presenting results in an organized web page, downloadable for further analysis.  相似文献   

11.
Schageman JJ  Basit M  Gallardo TD  Garner HR  Shohet RV 《BioTechniques》2002,32(2):338-40, 342, 344
The comprehensive analysis and visualization of data extracted from cDNA microarrays can be a time-consuming and error-prone process that becomes increasingly tedious with increased number of gene elements on a particular microarray. With the increasingly large number of gene elements on today's microarrays, analysis tools must be developed to meet this challenge. Here, we present MarC-V, a Microsoft Excel spreadsheet tool with Visual Basic macros to automate much of the visualization and calculation involved in the analysis process while providing the familiarity and flexibility of Excel. Automated features of this tool include (i) lower-bound thresholding, (ii) data normalization, (iii) generation of ratio frequency distribution plots, (iv) generation of scatter plots color-coded by expression level, (v) ratio scoring based on intensity measurements, (vi) filtering of data based on expression level or specific gene interests, and (vii) exporting data for subsequent multi-array analysis. MarC-V also has an importing function included for GenePix results (GPR) raw data files.  相似文献   

12.
Data preprocessing including proper normalization and adequate quality control before complex data mining is crucial for studies using the cDNA microarray technology. We have developed a simple procedure that integrates data filtering and normalization with quantitative quality control of microarray experiments. Previously we have shown that data variability in a microarray experiment can be very well captured by a quality score q(com) that is defined for every spot, and the ratio distribution depends on q(com). Utilizing this knowledge, our data-filtering scheme allows the investigator to decide on the filtering stringency according to desired data variability, and our normalization procedure corrects the q(com)-dependent dye biases in terms of both the location and the spread of the ratio distribution. In addition, we propose a statistical model for false positive rate determination based on the design and the quality of a microarray experiment. The model predicts that a lower limit of 0.5 for the replicate concordance rate is needed in order to be certain of true positives. Our work demonstrates the importance and advantages of having a quantitative quality control scheme for microarrays.  相似文献   

13.
SUMMARY: We present a web server for Diagnosis and Normalization of MicroArray Data (DNMAD). DNMAD includes several common data transformations such as spatial and global robust local regression or multiple slide normalization, and allows for detecting several kinds of errors that result from the manipulation and the image analysis of the arrays. This tool offers a user-friendly interface, and is completely integrated within the Gene Expression Pattern Analysis Suite (GEPAS). AVAILABILITY: The tool is accessible on-line at http://dnmad.bioinfo.cnio.es.  相似文献   

14.
Optimized LOWESS normalization parameter selection for DNA microarray data   总被引:1,自引:0,他引:1  

Background  

Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail.  相似文献   

15.
16.
17.
Normalization of expression levels applied to microarray data can help in reducing measurement error. Different methods, including cyclic loess, quantile normalization and median or mean normalization, have been utilized to normalize microarray data. Although there is considerable literature regarding normalization techniques for mRNA microarray data, there are no publications comparing normalization techniques for microRNA (miRNA) microarray data, which are subject to similar sources of measurement error. In this paper, we compare the performance of cyclic loess, quantile normalization, median normalization and no normalization for a single-color microRNA microarray dataset. We show that the quantile normalization method works best in reducing differences in miRNA expression values for replicate tissue samples. By showing that the total mean squared error are lowest across almost all 36 investigated tissue samples, we are assured that the bias correction provided by quantile normalization is not outweighed by additional error variance that can arise from a more complex normalization method. Furthermore, we show that quantile normalization does not achieve these results by compression of scale.  相似文献   

18.
The loop design of Kerr and Churchill is a clever application of incomplete blocks of size 2 to two-channel microarray experiments. In this paper, we extend the loop design to include more replicates, biological and technical replication, multi-factor experiments, and blocking. Loop and extended loop designs are shown to be more efficient than the reference design for any given number of arrays. We also show that adding new treatments to a loop design requires the same number of additional arrays as adding treatments to a reference design, with a greater gain in power. Given the flexibility of extended loop designs and their power, we propose that these should be the designs of choice for most experiments using two-channel microarrays.  相似文献   

19.

Background  

Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array.  相似文献   

20.
DNA microarray technology provides useful tools for profiling global gene expression patterns in different cell/tissue samples. One major challenge is the large number of genes relative to the number of samples. The use of all genes can suppress or reduce the performance of a classification rule due to the noise of nondiscriminatory genes. Selection of an optimal subset from the original gene set becomes an important prestep in sample classification. In this study, we propose a family-wise error (FWE) rate approach to selection of discriminatory genes for two-sample or multiple-sample classification. The FWE approach controls the probability of the number of one or more false positives at a prespecified level. A public colon cancer data set is used to evaluate the performance of the proposed approach for the two classification methods: k nearest neighbors (k-NN) and support vector machine (SVM). The selected gene sets from the proposed procedure appears to perform better than or comparable to several results reported in the literature using the univariate analysis without performing multivariate search. In addition, we apply the FWE approach to a toxicogenomic data set with nine treatments (a control and eight metals, As, Cd, Ni, Cr, Sb, Pb, Cu, and AsV) for a total of 55 samples for a multisample classification. Two gene sets are considered: the gene set omegaF formed by the ANOVA F-test, and a gene set omegaT formed by the union of one-versus-all t-tests. The predicted accuracies are evaluated using the internal and external crossvalidation. Using the SVM classification, the overall accuracies to predict 55 samples into one of the nine treatments are above 80% for internal crossvalidation. OmegaF has slightly higher accuracy rates than omegaT. The overall predicted accuracies are above 70% for the external crossvalidation; the two gene sets omegaT and omegaF performed equally well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号