首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel lysosomal alpha-mannosidase, with unique substrate specificity, has been partially purified from human spleen by chromatography through concanavalin A-Sepharose, DEAE-Sephadex, and Sephacryl S-300. This enzyme can catalyze the hydrolysis of only 1 mannose residue, that which is alpha(1----6)-linked to the beta-linked mannose in the core of N-linked glycans, as found in the oligosaccharides Man alpha(1----6)[Man alpha(1----3)] Man beta(1----4)GlcNAc and Man alpha(1----6)Man beta(1----4) GlcNAc. The newly described alpha-mannosidase does not catalyze the hydrolysis of mannose residues outside of the core, even if they are alpha(1----6)-linked, and is not active on the other alpha-linked mannose in the core, which is (1----3)-linked. The narrow specificity of the novel mannosidase contrasts sharply with that of the major lysosomal alpha-mannosidase, which is able to catalyze the degradation of oligosaccharides containing diverse linkage and branching patterns of the mannose residues. Importantly, although the major mannosidase readily catalyzes the hydrolysis of the core alpha(1----3)-linked mannose, it is poorly active towards the alpha(1----6)-linked mannose, i.e. the very same mannose residue for which the newly characterized mannosidase is specific. The novel enzyme is further differentiated from the major lysosomal alpha-mannosidase by its inability to catalyze the efficient hydrolysis of the synthetic substrate p-nitrophenyl alpha-mannoside, and by the strong stimulation of its activity by Co2+ and Zn2+. Similarly to the major mannosidase, it is strongly inhibited by swainsonine and 1,4-dideoxy-1,4-imino-D-mannitol, but not by deoxymannojirimycin. The presence of this novel alpha-mannosidase activity in human tissues provides the best explanation, to date, for the structures of the oligosaccharides stored in human alpha-mannosidosis. In this condition the major lysosomal alpha-mannosidase activity is severely deficient, but apparently the alpha(1----6)-mannosidase is unaffected, so that the oligosaccharide structures reflect the unique specificity of this enzyme.  相似文献   

2.
Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver   总被引:24,自引:0,他引:24  
An alpha-mannosidase activity has been identified in a preparation of rat liver endoplasmic reticulum and shown to be distinct from the previously described Golgi alpha-mannosidases I and II and the lysosomal alpha-mannosidase. The enzyme was solubilized with deoxycholate and separated from other alpha-mannosidases by passage over concanavalin A-Sepharose to which it does not bind. The endoplasmic reticulum alpha-mannosidase cleaves alpha-1,2-linked mannoses from high mannose oligosaccharides and, unlike Golgi alpha-mannosidase I, is active against p-nitrophenyl-alpha-D-mannoside (Km = 0.17 mM). It has no activity toward GlcNAc-Man5GlcNAc2 peptide, the specific substrate of the Golgi alpha-mannosidase II. The endoplasmic reticulum alpha-mannosidase activity toward p-nitrophenyl-alpha-D-mannoside is relatively insensitive to swainsonine, an inhibitor of both the lysosomal alpha-mannosidase and Golgi alpha-mannosidase II. We propose that the endoplasmic reticulum alpha-mannosidase is responsible for the removal of mannose residues from asparagine-linked high mannose type oligosaccharides prior to their entry into the Golgi.  相似文献   

3.
Analysis of the neutral urinary oligosaccharides in bovine, feline and human mannosidosis by thin-layer and gel-permeation chromatography has shown that the patterns of stored oligosaccharides in the three species are different. In bovine and feline mannosidosis the most abundant urinary oligosaccharide is also the most abundant in the tissues of each species. The predominant oligosaccharides were purified by a combination of gel-filtration, ion-exchange and thin-layer chromatography and shown to contain only mannose and N-acetylglucosamine by g.l.c. and g.l.c.--mass spectrometry. The probable composition and size of each oligosaccharide were predicted from its chromatographic properties, sugar composition and the known structure of asparagine-linked oligosaccharides. The bovine and feline oligosaccharides belonged to a homologous series of general composition Mann (GlcNAc)2, whereas the human oligosaccharides belong to a different series, MannGlcNAc. These structures suggest that lysosomal endohexosaminidase is not present in bovine and feline tissues. The predominant feline storage product, Man3(GlcNAc)2, was the expected storage product from the catabolism of complex asparagine-linked glycans. In contrast, the predominant bovine oligosaccharide, Man2(GlcNAc)2, probably lacks one of the alpha-linked mannose residues in the core region. A similar situation occurs in human mannosidosis. It is predicted that in these species either that the residual mutant alpha-D-mannosidase retains activity towards one of the core alpha-linked mannose residues or that another form of lysosomal alpha-D-mannosidase that is unaffected in these disorders occurs. It is concluded that the differences in storage products are due to differences in the catabolic pathways of glycoproteins among the species.  相似文献   

4.
The processing of N-linked oligosaccharides by alpha-mannosidases in the endoplasmic reticulum and Golgi is a process conserved in plants and animals. After the transfer of a GlcNAc residue to Asn-bound Man(5)GlcNAc(2) by N-acetylglucosaminyltransferase I, an alpha-mannosidase (EC 3.2.1.114) removes one alpha1,3-linked and one alpha1,6-linked mannose residue. In this study, we have identified the relevant alpha-mannosidase II gene (aman-2; F58H1.1) from Caenorhabditis elegans and have detected its activity in both native and recombinant forms. For comparative studies, the two other cDNAs encoding class II mannosidases aman-1 (F55D10.1) and aman-3 (F48C1.1) were cloned; the corresponding enzymes are, respectively, a putative lysosomal alpha-mannosidase and a Co(II)-activated alpha-mannosidase. The analysis of the N-glycan structures of an aman-2 mutant strain demonstrates that the absence of alpha-mannosidase II activity results in a shift to structures not seen in wild-type worms (e.g. N-glycans with the composition Hex(5-7)HexNAc(2-3)Fuc(2)Me) and an accumulation of hybrid oligosaccharides. Paucimannosidic glycans are almost absent from aman-2 worms, indicative also of a general lack of alpha-mannosidase III activity. We hypothesize that there is a tremendous flexibility in the glycosylation pathway of C. elegans that does not impinge, under standard laboratory conditions, on the viability of worms with glycotypes very unlike the wild-type pattern.  相似文献   

5.
Oligosaccharides containing terminal non-reducing alpha(1 leads to 2)-, alpha(1 leads to 3)-, and alpha(1 leads to 6)-linked mannose residues, isolated from human and bovine mannosidosis urines were used as substrates to test the specificities of acidic alpha-mannosidases isolated from human and bovine liver. The enzymes released all the alpha-linked mannose residues from each oligosaccharide and were most effective on the smallest substrate. Enzyme A in each case was less active on the oligosaccharides than alpha-mannosidase B2, even though the apparent Km value for the substrates was the same with each enzyme. The human acidic alpha-mannosidases were also found to be more active on substrates isolated from human rather than bovine mannosidosis urine. Human alpha-mannosidase C, which has a neutral pH optimum when assayed with a synthetic substrate, did not hydrolyse any of the oligosaccharides at neutral pH, but was found to be active at an acidic pH.  相似文献   

6.
The inhibitory properties of a series of synthetic epimers and analogues of swainsonine towards the multiple forms of human alpha-mannosidases were studied in vitro and in cells in culture. Of the five epimers tested, only the 8a-epimer and 8,8a-diepimer of swainsonine were specific and competitive inhibitors (Ki values of 7.5 x 10(-5) and 2 x 10(-6) M respectively) of lysosomal alpha-mannosidases in vitro and induced storage of mannose-rich oligosaccharides in human fibroblasts in culture. The structures of these storage products indicated that processing alpha-mannosidases had also been inhibited. This was consistent with the observed inhibition in vitro of these enzymes by these compounds. In contrast, the 8-epimer, 1,8-diepimer and 2,8a-diepimer of swainsonine had no appreciable effect on any alpha-mannosidases. The corresponding open-chain analogues of swainsonine, namely 1,4-dideoxy-1,4-imino-D-mannitol, of the 8a-epimer, namely 1,4-dideoxy-1,4-imino-D-talitol, and of the 8,8a-diepimer, namely 1,4-dideoxy-1,4-imino-L-allitol, were weaker competitive inhibitors of lysosomal alpha-mannosidase, with Ki values of 1.3 x 10(-5), 1.2 x 10(-4) and 1.2 x 10(-4) M respectively. These analogues also proved less effective at inducing oligosaccharide accumulation and in disturbing glycoprotein processing. These compounds offer the opportunity to determine which alterations in the chirality of the swainsonine molecule affect its inhibitory specificity. A comparison of their biological activities has identified reagents that will be useful for studying steps in the biosynthesis and catabolism of glycoproteins and that may be of potential value in chemotherapy.  相似文献   

7.
In order to study the substrate specificities of the enzymes implicated in the catabolism of oligomannosidic-type glycans, the oligosaccharides Man9GlcNAc and Man5GlcNAc were incubated with rat liver lysosomal and cytosolic alpha-D-mannosidases and the hydrolysis products were characterized by 400 MHz 1H-NMR spectroscopy. Although they both occur in an ordered way, the two catabolic pathways are quite different. The lysomal pathway is realized in two stages: the first leads from Man9GlcNAc to Man5GlcNAc by preferential cleavage of the four alpha-1,2-linked mannose residues, and the second, Zn(2+)-dependent, leads from Man5GlcNAc to Man (beta 1-4) GlcN Ac by hydrolysis of alpha-1, 3- and alpha-1,6-linked residues. On the contrary, the cytosolic pattern leads by a pathway quite different to a unique hexasaccharide Man5GlcNAc which has, curiously, the same structure as one of the polyprenolic intermediates occurring in the cytosol during the biosynthesis of N-glycosylprotein glycans: Man (alpha 1-2) Man (alpha 1-2) Man (alpha 1-3) [Man (alpha 1-6)] Man (beta 1-4) GlcN Ac (beta 1-4) GlcNAc alpha 1-P-P-Dol.  相似文献   

8.
Previously, Man8-14GlcNAc oligosaccharides were isolated from highly purified Saccharomyces cerevisiae invertase and shown by one-dimensional 1H NMR spectroscopy and alpha 1,2-linkage-specific mannosidase digestion to constitute a homologous series of nearly homogeneous compounds, which appeared to define the intermediates in oligosaccharide core synthesis in yeast (Trimble, R.B. and Atkinson, P.H. (1986) J. Biol. Chem., 261, 9815-9824). To evaluate whether invertase oligosaccharides reflected global core processing of yeast glycans, the soluble glycoprotein pool of disrupted log-phase cells was digested with endo-beta-N-acetyl-glucosaminidase H and Man8-13GlcNAc were isolated by Bio-Gel P-4 chromatography. Although analysis of each size class by one-dimensional 400 MHz and two-dimensional 500 MHz phase-sensitive COSY 1H NMR spectroscopy revealed considerable structural heterogeneity in all but Man8GlcNAc, the major positional isomer in Man9-13GlcNAc (approximately 50%) was identical to that previously elucidated on invertase. The heterogeneity resided in four families of oligosaccharides: (i) Glc3Man9GlcNAc----Man8 GlcNAc trimming intermediates; (ii) alpha-mannosidase degradation products of the principal isomers; (iii) mannan elongation intermediates; (iv) core structures with the alpha 1,2-linked mannose usually removed by the processing alpha-mannosidase. The potential for the vacuolar alpha-mannosidase (AMS1 gene product) to generate heterogeneity in vitro was confirmed by isolating oligosaccharides from AMS1 and ams1 yeast strains in the presence of a Man13GlcNAc[3H]-ol marker (where GlcNAc[3H]-ol is N-acetylglucosamin [1-3H]itol). Degradation of the Man13GlcNAc[3H]-ol to Man9-12GlcNAc[3H]-ol occurred in the former, but not in the latter. A role for the vacuolar alpha-mannosidase in generating at least some heterogeneity in vivo was inferred from the 1H NMR spectrum of the AMS1 Man11GlcNAc pool, which showed more structural isomerism than seen in the spectrum of a comparable ams1 Man11GlcNAc preparation. Thus, the principal biosynthetic pathway of inner core mannan in Saccharomyces is defined by the Man8-13GlcNAc oligosaccharides found on external invertase, while structural heterogeneity in these size classes results from precursor processing in the endoplasmic reticulum, core extension in the Golgi and metabolic degradation in the vacuole.  相似文献   

9.
alpha-Mannosidosis is a lysosomal storage disorder caused by deficient activity of the lysosomal alpha-mannosidase. We report here the sequencing and expression of the lysosomal alpha-mannosidase cDNA from normal and alpha-mannosidosis guinea pigs. The amino acid sequence of the guinea pig enzyme displayed 82-85% identity to the lysosomal alpha-mannosidase in other mammals. The cDNA of the alpha-mannosidosis guinea pig contained a missense mutation, 679C>T, leading to substitution of arginine by tryptophan at amino acid position 227 (R227W). The R227W allele segregated with the alpha-mannosidosis genotype in the guinea pig colony and introduction of R227W into the wild-type sequence eliminated the production of recombinant alpha-mannosidase activity in heterologous expression studies. Furthermore, the guinea pig mutation has been found in human patients. Our results strongly indicate that the 679C>T mutation causes alpha-mannosidosis and suggest that the guinea pig will be an excellent model for investigation of pathogenesis and evaluation of therapeutic strategies for human alpha-mannosidosis.  相似文献   

10.
Lysosomal alpha-mannosidase (LAM: EC 3.2.1.24) belongs to the sequence-based glycoside hydrolase family 38 (GH38). Two other mammalian GH38 members, Golgi alpha-mannosidase II (GIIAM) and cytosolic alpha-mannosidase, are expressed in all tissues. In humans, cattle, cat and guinea pig, lack of lysosomal alpha-mannosidase activity causes the autosomal recessive disease alpha-mannosidosis. Here, we describe the three-dimensional structure of bovine lysosomal alpha-mannosidase (bLAM) at 2.7A resolution and confirm the solution state dimer by electron microscopy. We present the first structure of a mammalian GH38 enzyme that offers indications for the signal areas for mannose phosphorylation, suggests a previously undetected mechanism of low-pH activation and provides a template for further biochemical studies of the family 38 glycoside hydrolases as well as lysosomal transport. Furthermore, it provides a basis for understanding the human form of alpha-mannosidosis at the atomic level. The atomic coordinates and structure factors have been deposited in the Protein Data Bank (accession codes 1o7d and r1o7dsf).  相似文献   

11.
Yanagida K  Natsuka S  Hase S 《Glycobiology》2006,16(4):294-304
It is thought that free oligosaccharides in the cytosol are an outcome of quality control of glycoproteins by endoplasmic reticulum-associated degradation (ERAD). Although considerable amounts of free oligosaccharides accumulate in the cytosol, where they presumably have some function, detailed analyses of their structures have not yet been carried out. We isolated 21 oligosaccharides from the cytosolic fraction of HepG2 cells and analyzed their structures by the two-dimensional high-performance liquid chromatography (HPLC) sugar-mapping method. Sixteen novel oligosaccharides were identified in the cytosol in this study. All had a single N-acetylglucosamine at their reducing-end cores and could be expressed as (Man)n (GlcNAc)1. No free oligosaccharide with N,N'-diacetylchitobiose was detected in the cytosolic fraction of HepG2 cells. This suggested that endo-beta-N-acetylglucosaminidase was a key enzyme in the production of cytosolic free oligosaccharides. The 21 oligosaccharides were classified into three series--series 1: oligosaccharides processed from Manalpha1-2Manalpha1-6 (Manalpha1-2Manalpha1-3)Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3) Manbeta1-4GlcNAc (M9A') and Manalpha1-2Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M8A') by digestion with cytosolic alpha-mannosidase; series 2: oligosaccharides processed with Golgi alpha-mannosidases in addition to endoplasmic reticulum (ER) and cytosolic alpha-mannosidases; and series 3: glucosylated oligosaccharides produced from Glc1Man9GlcNAc1 by hydrolysis with cytosolic alpha-mannosidase. The presence of the series "2" oligosaccharides suggests that some of the misfolded glycoproteins had been processed in pre-cis-Golgi vesicles and/or the Golgi apparatus. When the cells were treated with swainsonine to inhibit cytosolic alpha-mannosidase, the amounts of M9A' and M8A' increased remarkably, suggesting that these oligosaccharides were translocated into the cytosol. Four oligosaccharides of series "2" also increased. In contrast, there were obvious reductions in Manalpha1-6(Manalpha1-2Manalpha1-2Manalpha1-3)Manbeta1-4GlcNAc (M5B'), the end product from M9A' by digestion with cytosolic alpha-mannosidase, and Manalpha1-6(Manalpha1- 2Manalpha1-3)Manbeta1-4GlcNAc, derived from series "2" oligosaccharides by digestion with cytosolic alpha-mannosidase. Our data suggest that (1) some of the cytosolic oligosaccharides had been processed with Golgi alpha-mannosidases, (2) the major oligosaccharides translocated from the ER were M9A' and M8A', and (3) M5B' and Glc1M5B' were maintained at relatively high concentrations in the cytosol.  相似文献   

12.
13.
The synthesis, transport and processing of lysosomal enzymes was examined in human hepatoma HepG2 cells and in human fibroblasts exposed to the Golgi alpha-mannosidase I inhibitor 1-deoxy-manno-nojirimycin. In HepG2 cells cathepsin D, beta-hexosaminidase and arylsulfatase B synthesized in the presence of 5 mM 1-deoxy-manno-nojirimycin contained exclusively endo-beta-N-acetylglucosaminidase H-cleavable oligosaccharides, indicating that alpha-mannosidase I had been inhibited efficiently. The proteolytic processing of intracellularly retained cathepsin D was retarded and the fraction of secreted cathepsin D was increased two-fold. In fibroblasts neither segregation nor maturation of cathepsin D were affected by 1-deoxy-manno-nojirimycin in spite of the inhibition of oligosaccharide processing. In the presence of the glucosidase I inhibitor 1-deoxynojirimycin, the precursor of cathepsin D (larger by about 1 kDa than the secreted form) accumulated transiently in light membranes in HepG2 cells. Release from the site of accumulation was accompanied by a decrease in size by about 1 kDa. This change was attributed to the removal of glucose residues. In fibroblasts the transient accumulation of larger precursors in the presence of 1-deoxynojirimycin was more pronounced than in HepG2 cells. The differential effects of alpha-mannosidase I and glucosidase I inhibitors on the transport of cathepsin D in HepG2 cells and fibroblasts may indicate that different intermediates in the biosynthetic pathway of asparagine-linked oligosaccharides participate in the transport of lysosomal enzymes in the two cell types.  相似文献   

14.
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.  相似文献   

15.
Two homologous series of urinary oligosaccharides were identified by h.p.l.c. and fast-atom-bombardment mass spectrometry in feline alpha-mannosidosis. The predominant series has the composition Man2-8GlcNAc2 and a minor series the composition Man2-9GlcNAc. The structure of the most abundant oligosaccharide, which accounts for over 80% of the urinary oligosaccharide, was shown to be alpha-D-Manp(1----3)[alpha-D-Manp-(1----6)]beta-D-Manp -(1----4)-beta-D-GlcpNA c-(1----4)-D-GlcNAc by gas chromatography and mass spectrometry. Such a structure is consistent with the incomplete catabolism of complex N-linked glycans due to a deficiency of alpha-D-mannosidase in tissue lacking an endohexosaminidase activity.  相似文献   

16.
The clinical, neurophysiological, morphological and biochemical manifestation of eyes from Persian kittens affected with alpha-mannosidosis were studied. Clinically the disease is characterized by progressive corneal and lenticular opacification. In addition there is asymmetry in shape and latency of signal conductions which were demonstrated by visual evoked potential studies. Morphological and histochemical studies revealed vacuolization of various ocular cell types which stained positively with Concanavalia ensiformis agglutinin (Con A) and wheat germ agglutinin (WGA). Biochemical studies illustrated low activity of acid alpha-mannosidase in cultured keratocytes and abnormal storage of partially degraded oligosaccharides in these cells, in vitreous humor and lens. This comprehensive study of ocular alpha-mannosidosis demonstrates enzyme deficiency which leads to abnormal storage of oligosaccharides in affected cells and is manifested by morphological alterations and functional impairment.  相似文献   

17.
N-Glycans linked to the human secreted form of epidermal growth factor receptor were isolated from A431 cells after swainsonine treatment. Analysis of the oligosaccharides by (1)H NMR spectroscopy and mass spectrometry shows the presence of oligomannose- and (alpha2-3)-sialylated hybrid-type glycans. The major hybrid-type oligosaccharide chains are fucosylated at the Asn-bound GlcNAc residue. Smaller amounts of the hybrid-type structures are also fucosylated at peripheral GlcNAc residues, constituting the sialyl-Le(x) antigen. No complex-type glycans are found, suggesting the absence of alpha-mannosidase III. An assay for alpha-mannosidase III on the A431 cells in the absence and presence of 6 microM swainsonine shows that Man(5)GlcNAc(2) is not converted into Man(3)GlcNAc(2), thereby confirming that these cells do not contain alpha-mannosidase III activity.  相似文献   

18.
After treatment with swainsonine, an inhibitor of both lysosomal alpha-mannosidase and Golgi alpha-mannosidase-II activities, analysis of [3H]mannose-labeled glycans showed that HT-29 cells, derived from a human colonic adenocarcinoma, displayed distinct patterns of N-glycan expression, depending upon their state of enterocytic differentiation. In differentiated HT-29 cells hybrid-type chains were detected, whereas undifferentiated HT-29 cells accumulated high-mannose-type oligosaccharide, despite our demonstration of Golgi alpha-mannosidase-II activity in both cell populations. Pulse/chase experiments carried out in the presence of swainsonine revealed that the persistence of high-mannose-type chains in undifferentiated HT-29 cells was the result of the stabilization of glycoproteins substituted with these glycans. These data suggest that in undifferentiated HT-29 cells, glycoproteins with high-mannose-type oligosaccharides are delivered to a degradative compartment containing swainsonine-sensitive alpha-mannosidase(s), whereas in differentiated HT-29 cells glycoproteins enter a compartment in which alpha-mannosidase II (Golgi apparatus) is present. Thus, this apparent dual effect of swainsonine on N-glycan trimming may reflect differences in the intracellular traffic of glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells.  相似文献   

19.
Swainsonine is a potent inhibitor of lysosomal alpha-D-mannosidase, causes the production of hybrid glycoproteins, and is reported to produce a phenocopy of hereditary alpha-mannosidosis. We now report that the effects of swainsonine administration in the rat are different in two respects from those found in other animals thus far studied. Swainsonine caused the accumulation of oligosaccharide in kidney and urine but not in liver or brain. The accumulated oligosaccharides were mainly Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, Man(alpha 1-3)[Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4) GlcNAc, and Man(alpha 1-3)[Man(alpha 1-6)]Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc. Analogous branched Man4 and Man5 structures are found in pig and sheep tissues, but they are N, N'-diacetylchitobiose derivatives. The substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases were investigated because in one type of hereditary alpha-mannosidosis, that occurring in man, the major storage products are linear rather than branched oligosaccharides. The lysosomal enzyme showed much greater activity toward linear oligosaccharides than toward the branched oligosaccharides induced in the kidney by swainsonine. On the other hand, cytosolic alpha-D-mannosidase preferred the branched oligosaccharides, a result suggesting that this mannosidase might be inhibitable by swainsonine and that the enzyme might play a normal role in glycoprotein catabolism. Swainsonine was indeed found to inhibit this enzyme at relatively high concentrations (I50 at 100 microM swainsonine), and concentrations of this magnitude were in fact found in the cytosol of kidney of swainsonine-fed rats. The kidney cytosolic alpha-D-mannosidase levels were reduced in these rats and, more important, the accumulated oligosaccharides were present mainly in the cytosol rather than in lysosomes. These results point to possible involvement of cytosolic alpha-D-mannosidase in glycoprotein degradation in the rat.  相似文献   

20.
The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号