首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bacillus subtilis Zur protein regulates zinc homeostasis by repressing at least 10 genes in response to zinc sufficiency. One of these genes, yciC, encodes an abundant protein postulated to function as a metallochaperone. Here, we used a genetic approach to identify the cis-acting elements and trans-acting factors contributing to the tight repression of yciC. Initial studies led to the identification of only trans-acting mutations, and, when the selection was repeated using a transposon library, all recovered mutants contained insertionally inactivated zur. Using a zur merodiploid strain, we obtained two cis-acting mutations that contained large deletions in the yciC regulatory region. We demonstrate that the yciC regulatory region contains two functional Zur boxes: a primary site (C2) overlapping a sigma(A) promoter approximately 200 bp upstream of yciC and a second site near the translational start point (C1). Zur binds to both of these sites to mediate strong, zinc-dependent repression of yciC. Deletion studies indicate that either Zur box is sufficient for repression, although repression by Zur bound to C2 is more efficient. Binding studies demonstrate that both sites bind Zur with high affinity. Sequence alignment of these and previously described Zur boxes suggest that Zur recognizes a more extended operator than other Fur family members. We used synthetic oligonucleotides to identify bases critical for DNA binding by Zur. Unlike Fur and PerR, which bind efficiently to sequences containing a core 7-1-7 repeat element, Zur requires a 9-1-9 inverted repeat for high-affinity binding.  相似文献   

2.
Ferric uptake repressor (Fur) proteins regulate the expression of iron homeostasis genes in response to intracellular iron levels. In general, Fur proteins bind with high affinity to a 19-bp inverted repeat sequence known as the Fur box. An alignment of 19 operator sites recognized by Bacillus subtilis Fur revealed a different conserved 15-bp (7-1-7) inverted repeat present twice within this 19-bp consensus sequence. We demonstrated using electrophoretic mobility shift assays that this 7-1-7 inverted repeat comprises a minimal recognition site for high-affinity binding by Fur. The resulting revised consensus sequence is remarkably similar to a related 7-1-7 inverted repeat sequence recognized by PerR, a Fur paralog. Our analysis of the affinity and stoichiometry of DNA binding by B. subtilis Fur, together with a reinterpretation of previously described studies of Escherichia coli Fur, supports a model in which the 19-bp Fur box represents overlapping recognition sites for two Fur dimers bound to opposite faces of the DNA helix. The resulting recognition complex is reminiscent of that observed for the functionally related protein DtxR. Like Fur, DtxR contains a helix-turn-helix DNA-binding motif, recognizes a 19-bp inverted repeat sequence, and has a typical DNase I footprint of approximately 30 bp. By envisioning a similar mode of DNA recognition for Fur, we can account for the internal symmetries noted previously within the Fur box, the tendency of Fur to extend into adjacent regions of DNA in a sequence-selective manner, and the observed patterns of DNA protection against enzymatic and chemical probes.  相似文献   

3.
4.
The Bacillus subtilis PerR repressor regulates the adaptive response to peroxide stress. The PerR regulon includes the major vegetative catalase (katA), an iron storage protein (mrgA), an alkylhydroperoxide reductase (ahpCF), a zinc uptake system (zosA), heme biosynthesis enzymes (hemAXCDBL), the iron uptake repressor (fur), and perR itself. A perR null strain is resistant to hydrogen peroxide, accumulates a porphyrin-like compound, and grows very slowly. The poor growth of the perR mutant can be largely accounted for by the elevated expression of two proteins: the KatA catalase and Fur. Genetic studies support a model in which poor growth of the perR null mutant is due to elevated repression of iron uptake by Fur, exacerbated by heme sequestration by the abundant catalase protein. Analysis of the altered-function allele perR991 further supports a link between PerR and iron homeostasis. Strains containing perR991 are peroxide resistant but grow nearly as well as the wild type. Unlike a perR null allele, the perR991 allele (F51S) derepresses KatA, but not Fur, which likely accounts for its comparatively rapid growth.  相似文献   

5.
Tiss A  Barre O  Michaud-Soret I  Forest E 《FEBS letters》2005,579(25):5454-5460
Ferric uptake regulator protein (Fur) is activated by its cofactor iron to a state that binds to a specific DNA sequence called 'Fur box'. Using mass spectrometry-based methods, we showed that Tyr 55 of Escherichia coli Fur, as well as the two thymines in positions 18 and 19 of the consensus Fur Box, are involved with binding. A conformational model of the Fur-DNA complex is proposed, in which DNA is in contact with each H4 [A52-A64] Fur helix. We propose that this interaction is a common feature for the Fur-like proteins, such as Zur and PerR, and their respective DNA boxes.  相似文献   

6.
7.
We utilized a full genome cDNA microarray to identify the genes that comprise the peroxide stimulon in the cyanobacterium Synechocystis sp. strain PCC 6803. We determined that a gene (slr1738) encoding a protein similar to PerR in Bacillus subtilis was induced by peroxide. We constructed a PerR knockout strain and used it to help identify components of the PerR regulon, and we found that the regulatory properties were consistent with the hypothesis that PerR functions as a repressor. This effort was guided by finding putative PerR boxes in positions upstream of specific genes and by careful statistical analysis. PerR and sll1621 (ahpC), which codes for a peroxiredoxin, share a divergent promoter that is regulated by PerR. We found that isiA, encoding a Chl protein that is induced under low-iron conditions, was strongly induced by a short-term peroxide stress. Other genes that were strongly induced by peroxide included sigD, sigB, and genes encoding peroxiredoxins and Dsb-like proteins that have not been studied yet in this strain. A gene (slr1894) that encoded a protein similar to MrgA in B. subtilis was upregulated by peroxide, and a strain containing an mrgA knockout mutation was highly sensitive to peroxide. A number of genes were downregulated, including key genes in the chlorophyll biosynthesis pathway and numerous regulatory genes, including those encoding histidine kinases. We used PerR mutants and a thioredoxin mutant (TrxA1) to study differential expression in response to peroxide and determined that neither PerR nor TrxA1 is essential for the peroxide protective response.  相似文献   

8.
In Bacillus subtilis, hydrogen peroxide (H2O2) induces expression of the PerR regulon including catalase (KatA), alkyl hydroperoxide reductase and the DNA-binding protein MrgA. We have identified the P-type metal-transporting ATPase ZosA (formerly YkvW) as an additional member of the perR regulon. Expression of zosA is induced by H2O2 and repressed by the PerR metalloregulatory protein, which binds to two Per boxes in the promoter region. Physiological studies implicate ZosA in Zn(II) uptake. ZosA functions together with two Zur-regulated uptake systems and one known efflux system to maintain Zn(II) homeostasis. ZosA is the major pathway for zinc uptake in cells growing with micromolar levels of Zn(II) that are known to repress the two Zur-regulated transporters. A perR mutant is sensitive to high levels of zinc, and this sensitivity is partially suppressed by a zosA mutation. ZosA is important for resistance to both H2O2 and the thiol-oxidizing agent diamide. This suggests that increased intracellular Zn(II) may protect thiols from oxidation. In contrast, catalase is critical for H2O2 resistance but does not contribute significantly to diamide resistance. Growth of cells with elevated zinc significantly increases resistance to high concentrations of H2O2, and this effect requires ZosA. Our results indicate that peroxide stress leads to the upregulation of a dedicated Zn(II) uptake system that plays an important role in H2O2 and disulphide stress resistance.  相似文献   

9.
10.
11.
Bacillus subtilis, a Gram-positive soil bacterium, provides a model system for the study of metal ion homeostasis. Metalloregulatory proteins serve as the arbiters of metal ion sufficiency and regulate the expression of metal homeostasis pathways. In B. subtilis, uptake systems are regulated by the highly selective metal-sensing repressors Fur (iron), Zur (zinc), and MntR (manganese). Metal efflux systems are regulated by MerR and ArsR family homologs which, by contrast, can be rather non-specific with regard to metal selectivity. A Fur homolog, PerR, functions as an Fe(II)-dependent peroxide stress sensor and regulates putative metal transport and storage functions.  相似文献   

12.
13.
Class II major histocompatibility genes are expressed at high levels in B lymphocytes and are gamma interferon (IFN-gamma) inducible in many other cells. Previously, we observed that DRA promoter sequences from positions -150 to +31 determine the tissue specificity of this class II gene. Moreover, Z and X boxes located between positions -145 and -87 conferred B-cell specificity and IFN-gamma inducibility upon a heterologous promoter. In this study, sequences from positions -145 to -35 in the DRA promoter were systematically mutated by using oligonucleotide cassettes. Z (-131 to -125), pyrimidine (-116 to -109), X (-108 to -95), Y (-73 to -61), and octamer (-52 to -45) boxes were required for B-cell specificity and, with the exception of the octamer box, for IFN-gamma inducibility. Z box and sequences flanking Z and X boxes helped to determine low levels of expression in T and uninduced cells. In phenotypically distinct cells, shared and distinct proteins bound to these conserved upstream sequences. However, few correlations between expression and DNA-binding proteins could be made. Similar proteins bound to Z and X boxes, and the Z box most likely represents a duplication of the X box.  相似文献   

14.
15.
16.
In Escherichia coli K-12, the repression of tyrP requires the binding of the TyrR protein to the operator in the presence of coeffectors, tyrosine and ATP. This operator contains two 22-bp palindromic sequences which are termed TyrR boxes. Methylation, uracil, and ethylation interference experiments were used to identify the important sites in the TyrR boxes that make contacts with the TyrR protein. Methylation interference studies demonstrated that guanines at positions +8, -5, and -8 of the strong TyrR box and positions +8, -4, and -8 of the weak box are close to the TyrR protein. Uracil interference revealed that strong van der Waals contacts are made by the thymines at position -7 and +5 of the top strands of both strong and weak boxes and that weaker contacts are made by the thymines at positions +7 (strong box) and -5 and +7 (weak box) of the bottom strand. In addition, ethylation interference suggested that the phosphate backbone contacts are located at the end and central regions of the palindrome. These findings are supported by our results derived from studies of symmetrical mutations of the tyrP strong box. Overall, the results confirm the critical importance of the invariant (G x C)(C x G)8 base pairs for TyrR recognition and also indicate that interactions with (T x A)(A x T)7 are of major importance. In contrast, mutations in other positions result in weaker effects on the binding affinity of TyrR protein, indicating that these positions play a lesser role in TyrR protein recognition. Alanine scanning of both helices of the putative helix-turn-helix DNA-binding motif of TyrR protein has identified those amino acids whose side chains play an essential role in protein structure and DNA binding.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号