首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

To identify novel cold-active lipases from fungal sources and improve their production by heterologous expression in Pichia pastoris.

Results

A novel cold-active lipase gene (ReLipB) from Rhizomucor endophyticus was cloned. ReLipB was expressed at a high level in Pichia pastoris using high cell-density fermentation in a 5-l fermentor with the highest lipase activity of 1395 U/ml. The recombinant lipase (RelipB) was purified and biochemically characterized. ReLipB was most active at pH 7.5 and 25 °C. It was stable from pH 4.5–9.0. It exhibited broad substrate specificity towards p-nitrophenyl (pNP) esters (C2–C16) and triacylglycerols (C2–C12), showing the highest specific activities towards pNP laurate (231 U/mg) and tricaprylin (1840 U/mg), respectively. In addition, the enzyme displayed excellent stability with high concentrations of organic solvents including cyclohexane, n-hexane, n-heptane, isooctane and petroleum ester and surfactants.

Conclusions

A novel cold-active lipase from Rhizomucor endophyticus was identified, expressed at a high level and biochemically characterized. The high yield and unique enzymatic properties make this lipase of some potential for industrial applications.
  相似文献   

2.
Ros  G. H.  van Rotterdam  A. M. D.  Bussink  D. W.  Bindraban  P. S. 《Plant and Soil》2016,398(1-2):99-110

Background and aims

Although numerous studies have quantified the effects of land-use changes on soil organic carbon (SOC) stocks, few have examined simultaneously the weight of carbon (C) inputs vs. outputs in shaping these changes. We quantified the relative importance of soil C inputs and outputs in determining SOC changes following the conversion of natural ecosystems to pastures or tree plantations, and evaluated them in light of variations in biomass production, its quality (C:N) and above/belowground allocation patterns.

Methods

We sampled soils up to one-meter depth under native grasslands or forests and compared them to adjacent sites with pastures or plantations to estimate the proportion of new SOC (SOCnew) retained in the soil and the decomposition rates of old SOC (k SOC-old ) based on δ 13C shifts. We also analyzed these changes in the particulate organic matter fraction (POM) and estimated above and belowground net primary production (ANPP and BNPP) from satellite images, as well as changes in vegetation and soil’s C:N ratios.

Results

The conversion of grasslands to tree plantations decreased total SOC contents while the conversion of forests to pastures increased SOC contents in the topsoil but decreased them in deep layers, maintaining similar soil stocks up to 1 m. Changes in POM were less important and occurred only in the topsoil after cultivating pastures, following SOC changes. Surprisingly, both land-use trajectories showed similar decomposition rates in the topsoil and therefore overall SOC changes were not correlated with C outputs (k SOC-old ) but were significantly correlated with C inputs and their stabilization as SOCnew (similar results were obtained for the POM fraction). Pastures although decreased ANPP (as compared to forest) they increased belowground allocation and C:N ratios of their inputs to the soil, probably favoring the retention and stabilization of their new C inputs. In contrast, tree plantations increased ANPP but decreased BNPP (as compared to grasslands) and scarcely accumulated SOCnew probably as a result of the high C retention in standing biomass.

Conclusions

Our results suggest that SOC changes are mainly controlled by the quantity and quality of C inputs and their retention in the soil, rather than by C outputs in these perennial subtropical ecosystems.
  相似文献   

3.

Background

To ensure reliable sources of energy and raw materials, the utilization of sustainable biomass has considerable advantages over petroleum-based energy sources. Photosynthetic algae have attracted attention as a third-generation feedstock for biofuel production, because algae cultivation does not directly compete with agricultural resources, including the requirement for productive land and fresh water. In particular, cyanobacteria are a promising biomass feedstock because of their high photosynthetic capability.

Results

In the present study, the expression of the flv3 gene, which encodes a flavodiiron protein involved in alternative electron flow (AEF) associated with NADPH-coupled O2 photoreduction in photosystem I, was enhanced in Synechocystis sp. PCC6803. Overexpression of flv3 improved cell growth with corresponding increases in O2 evolution, intracellular ATP level, and turnover of the Calvin cycle. The combination of in vivo13C-labeling of metabolites and metabolomic analysis confirmed that the photosynthetic carbon flow was enhanced in the flv3-overexpressing strain.

Conclusions

Overexpression of flv3 improved cell growth and glycogen production in the recombinant Synechocystis sp. PCC6803. Direct measurement of metabolic turnover provided conclusive evidence that CO2 incorporation is enhanced by the flv3 overexpression. Increase in O2 evolution and ATP accumulation indicates enhancement of the AEF. Overexpression of flv3 improves photosynthesis in the Synechocystis sp. PCC6803 by enhancement of the AEF.
  相似文献   

4.

Aims

The capacitance method offers a rapid and non-destructive method for root measurement. We tested a four terminal (4 T) capacitance (C, Farads) measurement circuit, which removes parasitic errors. We also tested the plausibility of Dalton Model’s assumptions that roots act as cylindrical capacitors and that their entire length contributes to measured C.

Methods

Faba bean (Vicia faba) was grown in sand and harvested at different ages to determine fresh root mass. Length and radii were determined using scanning software. Tissue density ρ was determined from observing buoyancy in water and from scanned dimensions. Relative permittivity ε r was calculated using an empirical model fitted to the data.

Results

Parasitic errors were small. C was a poor predictor of root dimensions. An empirical model L ∝?(C/ρ k )m, was a reasonable predictor (R2?=?0.56; P?<?0.05) of root length L and was not related to root allometry. This relation also allowed calculation of a plausible average value of ε r .

Conclusions

The well-watered conditions ensured that contact resistances were low. It appeared that the entire root system was contributing to measured C and average calculated ε r was plausible for cortex tissue, if roots were assumed to be cylindrical capacitors (i.e. the Dalton Model)
  相似文献   

5.

Introduction

Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin–Benson–Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application.

Objectives

In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling.

Methods

In this study, steady-state carbon labelling experiments, using either d-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively.

Results

We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner–Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism.

Conclusion

This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16.
  相似文献   

6.

Objective

To determine the effects of carbohydrate-binding modules (CBMs) on the thermostability and catalytic efficiency of chitosanase CsnA.

Results

Three CBMs (BgCBM5, PfCBM32-2 and AoCBM35) were engineered at the C-terminus of chitosanase CsnA to create hybrid enzymes CsnA-CBM5, CsnA-CBM32 and CsnA-CBM35. K m values of all the hybrid enzymes were lower than that of the wild type (WT) enzyme; however, only CsnA-CBM5 had an elevated specific activity and catalytic efficiency. The fusion of BgCBM5 enhanced the thermostability of the enzyme, which exhibited a 8.9 °C higher T50 and a 2.9 °C higher Tm than the WT. Secondary structural analysis indicated that appending BgCBM5 at the C-terminus considerably changed the secondary structure content.

Conclusions

The fusion of BgCBM5 improved the thermal stability of CsnA, and the obtained hybrid enzyme (CsnA-CBM5) is a useful candidate for industrial application.
  相似文献   

7.

Aims

Plant growth forms can influence carbon cycling, particularly in carbon-rich ecosystems like northern peatlands; however, mechanistic evidence of this relationship is limited. Our aim was to determine if northern peatland plant growth forms alter belowground dissolved carbon chemistry and enhance carbon release through stimulated microbial metabolism.

Methods

We used replicated, peat monoliths populated exclusively by Sphagnum mosses, graminoids, or bare peat and quantified changes in belowground dissolved organic carbon chemistry, microbial metabolism, as well as respired CO2.

Results

The graminoid growth form was significantly distinct in belowground dissolved organic carbon chemistry with carbon compound lability 20 % and 11 % greater than bare peat and Sphagnum moss respectively. The labile dissolved organic carbon stimulated the microbial community, as indicated by greater microbial metabolic activity and richness values in conjunction with 50 % higher respired CO2 fluxes under the graminoid treatment.

Conclusions

Our results provide mechanistic evidence that peatland plant growth forms can drive carbon cycling processes by altering dissolved organic carbon chemistry to prompt cascading effects on the microbial community and carbon release — trends suggestive of microbial priming effects. Should climate change increase graminoid prevalence at the expense of Sphagnum moss northern peatland carbon store stability may be threatened by this mechanism.
  相似文献   

8.

Objectives

To engineer Escherichia coli for the heterologous production of di-rhamnolipids, which are important biosurfactants but mainly produced by opportunistic pathogen Pseudomonas aeruginosa.

Results

The codon-optimized rhlAB and rhlC genes originating from P. aeruginosa and Burkholderia pseudomallei were combinatorially expressed in E. coli to produce di-rhamnolipids with varied congeners compositions. Genes involved in endogenous upstream pathways (rhamnose and fatty acids synthesis) were co-overexpressed with rhlABrhlC, resulting in variations of rhamnolipids production and congeners compositions. Under the shake-flask condition, co-overexpression of rfbD with rhlABrhlC increased rhamnolipids production (0.64 ± 0.02 g l?1) than that in strain only expressing rhlABrhlC (0.446 ± 0.009 g l?1), which was mainly composed of di-rhamnolipids congeners Rha–Rha–C10–C10.

Conclusion

Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically engineered E. coli strains were achieved via combiniations of mono-/di-rhamnolipids synthesis modules and endogenous upstream modules.
  相似文献   

9.

Background

Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown.

Results

To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum.

Conclusions

In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.
  相似文献   

10.

Objectives

To improve rhamnolipid production and its potential application in removal of crude oil, the recombinant Pseudomonas aeruginosa strain DAB was constructed to enhance yield of rhamnolipids.

Results

Strain DAB had a higher yield of 17.3 g rhamnolipids l?1 in the removal process with crude oil as the sole carbon source than 10 g rhamnolipids l?1 of wild-type strain DN1, where 1% crude oil was degraded more than 95% after 14 days cultivation. These rhamnolipids reduced the surface tension of water from 72.92 to 26.15 mN m?1 with CMC of 90 mg l?1. The predominant rhamnolipid congeners were Rha–C10–C10 and Rha–Rha–C10–C10 detected by MALDI-TOF MS analysis with approx. 70% relative abundance, although a total of 21 rhamnolipid congeners were accumulated.

Conclusion

Increasing the copy number of rhlAB genes efficiently enhanced the production of rhamnolipids by the recombinant P. aeruginosa DAB and thus presents a promising application for the bioremediation process.
  相似文献   

11.

Background and aims

Microbial communities and their associated enzyme activities affect the quantity and chemical quality of carbon in soil. We aimed to evaluate the biochemical mechanisms underlying how N2-fixing species influences soil organic carbon chemical composition through soil microbial functional groups and enzyme activities.

Methods

We examined the effects of N2-fixing species mixed with Eucalyptus on soil carbon storage, and the chemical composition of an 8-year-old pure Eucalyptus urophylla plantation (PP) and a mixed E.urophylla and Acacia mangium plantation (MP).

Results

The soil carbon stock and recalcitrant carbon chemical component significantly increased in surface soil in MP. The total PLFAs and bacterial PLFAs increased by 29.1% and 27.0% in cool-dry season, while in the warm-wet season, the total PLFAs and bacterial PLFAs increased by 13.1% and 27.3%, respectively. However, the fungal PLFAs decreased significantly in warm-wet season in MP. The total activity of the cellulose-degrading enzyme β-glucosidase was significantly greater with mixed N2-fixing species in both dry-cool and wet-warm season. The increase in the Alk-C/O-Alk-C ratio and SOC was strongly associated with both C-acquisition activity and bacterial community.

Conclusions

Our findings highlight the importance of N2-fixing species in regulating both soil microbial communities and their functioning in association with soil extracellular enzyme activities, which contribute to the increased soil carbon storage and recalcitrant carbon composition in Eucalyptus plantations.
  相似文献   

12.

Background

Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment.

Results

Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L.

Conclusions

This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.
  相似文献   

13.

Introduction

Swine dysentery caused by Brachyspira hyodysenteriae is a production limiting disease in pig farming. Currently antimicrobial therapy is the only treatment and control method available.

Objective

The aim of this study was to characterize the metabolic response of porcine colon explants to infection by B. hyodysenteriae.

Methods

Porcine colon explants exposed to B. hyodysenteriae were analyzed for histopathological, metabolic and pro-inflammatory gene expression changes.

Results

Significant epithelial necrosis, increased levels of l-citrulline and IL-1α were observed on explants infected with B. hyodysenteriae.

Conclusions

The spirochete induces necrosis in vitro likely through an inflammatory process mediated by IL-1α and NO.
  相似文献   

14.

Objective

To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation.

Results

C. acutatum and C. nymphaeae used limonene, α-pinene, β-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34–4.01 g limonene-1,2-diol l?1, depending on the substrate (R-(+)-limonene, S-(?)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product.

Conclusions

This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.
  相似文献   

15.

Introduction

Salmonella enterica serovar Typhimurium is a Gram-negative enteropathogen that infects millions of people worldwide each year; the emergence of drug-resistant strains has heightened the need for novel treatments. Aqueous extracts of yerba mate (Ilex paraguariensis) effectively inhibit drug-resistant S. Typhimurium in vitro. Some chemical constituents that contribute to the extract’s antibacterial activity have been identified, but the mechanism of action of the extract is still unknown.

Objectives

This study sought to gain insight into the antibacterial mechanism of yerba mate extract against S. Typhimurium.

Methods

Assays for catalase activity and membrane permeability were used to select time points for an LC-MS metabolomics analysis of S. Typhimurium intracellular components.

Results

Yerba mate extract induced changes in central carbon metabolism in S. Typhimurium, reduced catalase activity by means other than direct inhibition, and did not change membrane integrity despite a significant increase in the production of a cell wall precursor. Additional significant differences were observed in the global metabolic regulators alpha-ketoglutarate and acetylphosphate, the energy-related molecule NAD+, and in an unexpected match to the antibacterial compound yohimbine.

Conclusion

This work provides the first evaluation of the mechanism of action of yerba mate extract on S. Typhimurium, revealing a major impact on central carbon metabolism, catalase activity, and possible metabolic links to interference in energy production and membrane integrity. The putative identification of the antibacterial compound yohimbine and the many unidentified compounds provides additional avenues for future investigations of yerba mate compounds capable of traversing or binding to S. Typhimurium’s membrane.
  相似文献   

16.

Objective

To explore the glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.

Result

Overexpression of a glycerol facilitator, glycerol dehydrogenase and dihydroxyacetone kinase from Escherichia coli K-12 in C. glutamicum led to recombinant strains NC-3G diverting glycerol utilization towards succinate production under O2 deprivation. Under these conditions, strain NC-3G efficiently consumed glycerol and produced succinate without growth. The recombinant C. glutamicum utilizing glycerol as the sole carbon source showed higher intracellular NADH/NAD+ ratio compare with utilizing glucose. The mass conversion of succinate increased from 0.64 to 0.95. Using an anaerobic fed-batch fermentation process, the final strain produced 38.4 g succinate/l with an average yield of 1.02 g/g.

Conclusions

The metabolically-engineered strains showed an efficient succinate production using glycerol as sole carbon source under O2 deprivation.
  相似文献   

17.

Background

The fungus Colletotrichum is a plant pathogen that causes the anthracnose disease, resulting in huge losses in various crops including the rose-scented geranium (Pelargonium graveolens). Although the bacterial community associated with plants has an important role in the establishment of plant diseases, little is known about what happens in P. graveolens.

Aims

To increase the knowledge about the bacterial community associated with P. graveolens and its relationship with anthracnose disease symptoms.

Methods

Quantitative PCR and high-throughput sequencing were combined to determine the presence of the fungus Colletotrichum and to reveal the bacterial communities associated with different plant parts – root, stem and leaf – and in the rhizosphere and bulk soil, and also to determine the respective bacterial communities associated with P. graveolens leaves symptomatic and asymptomatic for anthracnose disease.

Results

The fungus Colletotrichum was detected in all plant parts and in the surrounding soil. Bacterial communities varied spatially in plants, and the disease symptoms also influenced the composition of the bacterial community. Abundances of operational taxonomic units (OTUs) assigned to the phylum Actinobacteria and to the genus Streptococcus were greatly increased in asymptomatic leaves.

Conclusions

The bacterial community associated to geranium leaves responds to anthracnose symptoms.
  相似文献   

18.

Introduction

Metamorphosis is a complicated process in which cell proliferation, differentiation, and death are orchestrated to form the mature structures of insects. In Drosophila, this process is controlled by ecdysone, a steroid hormone responsible for tissue remodeling and organogenesis that gives rise to the adult fly.

Objective

By using a metabolomics approach, this study aimed to elucidate global changes in the central metabolic pathways in Drosophila throughout metamorphosis and then further examine the effects of temperature and origin on metabolic profiles.

Methods

Targeted and non-targeted metabolic profiling of time-course samples from Drosophila were constructed to cover a wide range of cellular metabolites during metamorphosis.

Results

This was the first wide-scale metabolomics study of Drosophila metamorphosis focusing on central metabolism. The abundance of detected metabolites changed drastically and correlated strongly with the development of Drosophila pupae. In non-stress conditions, temperature affected the developmental time, but the metabolic state at a certain stage of metamorphosis remained stable. Between D. melanogaster Canton S and Oregon R, similar metabolic profiles throughout metamorphosis was observed. However, there were still differences in purine and pyrimidine metabolism at an early stage in the pupal period, which was matched by differences in ecdysteroid levels.

Conclusion

This study supported the strength of metabolomics in the field of developmental biology. The results provided a general view on the metabolic profile of Drosophila during metamorphosis, which provides basic 3 knowledge for future metabolomics studies using Drosophila.
  相似文献   

19.

Introduction

In spite of advances in antibiotics, urinary tract infection (UTI) is still among the most common reasons for antibiotic medication worldwide. Persicaria capitata (Buch.-Ham. ex D. Don) H.Gross (P. capitata) is a herbal medicine used by the Miao people in China to treat UTI. However studies of its mechanism are challenging, owing to the complexity of P. capitata with multiple constituents acting on multiple metabolic pathways.

Objective

The objective of this study was to explore the working mechanism of P. capitata on urinary tract infection.

Methods

Relinqing® granule, which is solely made from aqueous extracts of the whole P. capitata plant, was used in this study. Urine metabolomics based on gas chromatography-mass spectroscopy was employed to assess the metabolic changes caused by administration of Relinqing® granule in a UTI mouse model. Female specific-pathogen-free Kunming mice were divided into control group (mock infection, saline treatment), model group (E.coli infection, saline treatment), Relinqing® group (E.coli infection, Relinqing® granule treatment), ciprofloxacin group (E.coli infection, ciprofloxacin treatment), and sham-Relinqing® group (no surgery, Relinqing® granule treatment).

Results

The results showed that after the treatments, urine levels of itaconic acid in Relinqing® group increased by 4.9 fold and 11.3 fold compared with model and ciprofloxacin groups respectively. Itaconic acid is an endogenous antibacterial metabolite produced by macrophages, which also functions as a checkpoint for metabolic reprogramming of macrophage.

Conclusion

Our findings suggest that this herbal medicine can cure urinary tract infection through modulation of immune system.
  相似文献   

20.

Objectives

To find new metabolic engineering strategies to improve the yield of acetone in Escherichia coli.

Results

Results of flux balance analysis from a modified Escherichia coli genome-scale metabolic network suggested that the introduction of a non-oxidative glycolysis (NOG) pathway would improve the theoretical acetone yield from 1 to 1.5 mol acetone/mol glucose. By inserting the fxpk gene encoding phosphoketolase from Bifidobacterium adolescentis into the genome, we constructed a NOG pathway in E.coli. The resulting strain produced 47 mM acetone from glucose under aerobic conditions in shake-flasks. The yield of acetone was improved from 0.38 to 0.47 mol acetone/mol glucose which is a significant over the parent strain.

Conclusions

Guided by computational analysis of metabolic networks, we introduced a NOG pathway into E. coli and increased the yield of acetone, which demonstrates the importance of modeling analysis for the novel metabolic engineering strategies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号