首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Helicobacter pylori ( Hp ), a Gram-negative bacterial pathogen and aetiologic agent of gastroduodenal disease in humans, is naturally competent for genetic transformation. Natural competence in bacteria is usually correlated with the presence of type IV pili or type IV pilin-like proteins, which are absent in Hp . Instead, we recently identified the comB operon in Hp , carrying four genes tentatively designated as orf2 , comB1 , comB2 and comB3 . We show here that all ComB proteins and the 37-amino-acid Orf2 peptide display significant primary sequence and structural homology/identity to the basic components of a type IV secretion apparatus. ComB1, ComB2 and ComB3, now renamed ComB8, ComB9 and ComB10, correspond to the Agrobacterium tumefaciens VirB8, VirB9 and VirB10 proteins respectively. The peptide Orf2 carries a lipoprotein motif and a second cysteine residue homologous to VirB7, and was thus designated ComB7. The putative ATPase ComB4, encoded by the open reading frame hp0017 of strain 26695, corresponds to virB4 of the A. tumefaciens type IV secretion system. A Hp comB4 transposon insertion mutant was totally defective in natural transformation. By complementation of a Hp Δ comB deletion mutant, we demonstrate that each of the proteins from ComB8 to ComB10 is absolutely essential for the development of natural transformation competence. The putative lipoprotein ComB7 is not essential, but apparently stabilizes the apparatus and modulates the transformation efficiency. Thus, pathogenic type I Hp strains contain two functional independent type IV transport systems, one for protein translocation encoded by the cag pathogenicity island and one for uptake of DNA by natural transformation. The latter system indicates a possible novel mechanism for natural DNA transformation in bacteria.  相似文献   

2.
Type I strains of Helicobacter pylori (Hp) use a type IV secretion system (T4SS), encoded by the cag pathogenicity island (cag-PAI), to deliver the bacterial protein CagA into eukaryotic cells and to induce interleukin-8 secretion. Translocated CagA is activated by tyrosine phosphorylation involving Src-family kinases. The mechanism and structural basis for type IV protein secretion is not well understood. We describe here, by confocal laser scanning microscopy and field emission scanning electron microscopy, a novel filamentous surface organelle which is part of the Hp T4SS. The organelle is often located at one bacterial pole but can be induced by cell contact also along the lateral side of the bacteria. It consists of a rigid needle, covered focally or completely by HP0527 (Cag7 or CagY), a VirB10-homologous protein. HP0527 is also clustered in the outer membrane. The VirB7-homologous protein HP0532 is found at the base of this organelle. These observations demonstrate for the first time by microscopic techniques a complex T4SS-associated, sheathed surface organelle reminiscent to the needle structures of bacterial type III secretion systems.  相似文献   

3.
The pathogenesis of Helicobacter pylori-associated disorders is strongly dependent on a specialized type IV secretion system (T4SS) encoded by the cag pathogenicity island (PAI). Cytotoxin-associated gene A (CagA) is the only known H. pylori protein translocated into the host cell followed by tyrosine phosphorylation through host protein kinases. H. pylori induces cellular processes which are either PAI- or CagA-dependent (e.g., cell motility), PAI-dependent, but CagA-independent (e.g., interleukin-8 release), or PAI- and CagA-independent (e.g., cyclooxygenase-2 release). Here, we investigated H. pylori strains mutated in single PAI genes of the wild type strain Hp26695 and their effects on cell motility. We found 17 gene products out of 27 PAI genes playing a superordinated role and five PAI-encoded proteins exhibiting a clearly critical role in motogenic host cell responses, whereas the remaining five PAI gene products had no significant influence on the motogenic response in reaction to H. pylori infection. This study clearly demonstrated that H. pylori-induced cell motility and invasive growth involve type IV secretion system-dependent signalling as well as translocated and phosphorylated CagA. These findings reveal a deeper insight in to the meaning of the T4SS of H. pylori for host cell motility.  相似文献   

4.
Helicobacter pylori type I strains harbour the cag pathogenicity island (cag-PAI), a 37 kb sequence,which encodes the components of a type IV secretion system. CagA, the first identified effector protein of the cag-PAI, is translocated into eukaryotic cells and tyrosine phosphorylated (CagAP-tyr) by a host cell tyrosine kinase. Translocation of CagA induces the dephosphorylation of a set of phosphorylated host cell proteins of unknown identity. CagA proteins of independent H. pylori strains vary in sequence and thus in the number and composition of putative tyrosine phosphorylation motifs (TPMs). The CagA protein of H. pylori strain J99 (CagAJ99) does not carry any of three putative tyrosine phosphorylation motifs (TPM-A, TPM-B or TPM-C) predicted by the MOTIF algorithm in CagA proteins. CagA,n is not tyrosine phosphorylated and is inactive in the dephosphorylation of host cell proteins. By site-specific mutagenesis,we introduced a TPM-C into CagA,. by replacing a single lysine with a tyrosine. This slight modification resulted in tyrosine phosphorylation of CagAJ99 and host cell protein dephosphorylation. In contrast, the removal of the indigenous TPM-C from CagAP12 did not abolish its tyrosine phosphorylation, suggesting that further phosphorylated sites are present in CagAP12. By generation of hybrid CagA proteins, a phosphorylation of the most N-terminal TPM-A could be excluded. Our data suggest that tyrosine phosphorylation at TPM-C is sufficient, but not exclusive,to activate translocated CagA. Activated CagAPtr might either convert into a phosphatase itself or activate a cellular phosphatase to dephosphorylate cellular phosphoproteins and modulate cellular signalling cascades of the host.  相似文献   

5.
Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma and MALT lymphoma, uses the Cag type IV secretion system to induce a strong proinflammatory response in the gastric mucosa and to inject its effector protein CagA into gastric cells. CagA translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it is considered as a major bacterial virulence trait. Recently, it has been shown that binding of the type IV secretion apparatus to integrin receptors on target cells is a crucial step in the translocation process. Several bacterial proteins, including the Cag-specific components CagL and CagI, have been involved in this interaction. Here, we have examined the localization and interactions of CagI in the bacterial cell. Since the cagI gene overlaps and is co-transcribed with the cagL gene, the role of CagI for type IV secretion system function has been difficult to assess, and conflicting results have been reported regarding its involvement in the proinflammatory response. Using a marker-free gene deletion approach and genetic complementation, we show now that CagI is an essential component of the Cag type IV secretion apparatus for both CagA translocation and interleukin-8 induction. CagI is distributed over soluble and membrane-associated pools and seems to be partly surface-exposed. Deletion of several genes encoding essential Cag components has an impact on protein levels of CagI and CagL, suggesting that both proteins require partial assembly of the secretion apparatus. Finally, we show by co-immunoprecipitation that CagI and CagL interact with each other. Taken together, our results indicate that CagI and CagL form a functional complex which is formed at a late stage of secretion apparatus assembly.  相似文献   

6.
7.
The type IV secretion system (T4SS) of Helicobacter pylori triggers massive inflammatory responses during gastric infection by mechanisms that are poorly understood. Here we provide evidence for a novel pathway by which the T4SS structural component, CagL, induces secretion of interleukin‐8 (IL‐8) independently of CagA translocation and peptidoglycan‐sensing nucleotide‐binding oligomerization domain 1 (NOD1) signalling. Recombinant CagL was sufficient to trigger IL‐8 secretion, requiring activation of α5β1 integrin and the arginine–glycine–aspartate (RGD) motif in CagL. Mutation of the encoded RGD motif to arginine‐glycine‐alanine (RGA) in the cagL gene of H. pylori abrogated its ability to induce IL‐8. Comparison of IL‐8 induction between H. pylori ΔvirD4 strains bearing wild‐type or mutant cagL indicates that CagL‐dependent IL‐8 induction can occur independently of CagA translocation. In line with this notion, exogenous CagL complemented H. pylori ΔcagL mutant in activating NF‐κB and inducing IL‐8 without restoring CagA translocation. The CagA translocation‐independent, CagL‐dependent IL‐8induction involved host signalling via integrin α5β1, Src kinase, the mitogen‐activated protein kinase (MAPK) pathway and NF‐κB but was independent of NOD1. Our findings reveal a novel pathway whereby CagL, via interaction with host integrins, can trigger pro‐inflammatory responses independently of CagA translocation or NOD1 signalling.  相似文献   

8.
Upon infection of the gastric epithelial cells, the Helicobacter pylori cytotoxin-associated gene A (CagA) virulence protein is injected into the epithelial cells via the type IV secretion system (TFSS), which is dependent on cholesterol. Translocated CagA is targeted by the membrane-recruited c-Src family kinases in which a tyrosine residue in the Glu-Pro-Ile-Tyr-Ala (EPIYA)-repeat region, which can be phosphorylated, induces cellular responses, including interleukin-8 (IL-8) secretion and hummingbird phenotype formation. In this study, we explored the role of EPIYA-containing C-terminal domain (CTD) in CagA tethering to the membrane lipid rafts and in IL-8 activity. We found that disruption of the lipid rafts reduced the level of CagA translocation/phosphorylation as well as CagA-mediated IL-8 secretion. By CagA truncated mutagenesis, we identified that the CTD, rather than the N-terminal domain, was responsible for CagA tethering to the plasma membrane and association with detergent-resistant membranes, leading to CagA-induced IL-8 promoter activity. Our results suggest that CagA CTD-containing EPIYAs directly interact with cholesterol-rich microdomains that induce efficient IL-8 secretion in the epithelial cells.  相似文献   

9.
Colonization of the human stomach by Helicobacter pylori is an important risk factor for development of gastric cancer. The H. pylori cag pathogenicity island (cag PAI) encodes components of a type IV secretion system (T4SS) that translocates the bacterial oncoprotein CagA into gastric epithelial cells, and CagL is a specialized component of the cag T4SS that binds the host receptor α5β1 integrin. Here, we utilized a mass spectrometry-based approach to reveal co-purification of CagL, CagI (another integrin-binding protein), and CagH (a protein with weak sequence similarity to CagL). These three proteins are encoded by contiguous genes in the cag PAI, and are detectable on the bacterial surface. All three proteins are required for CagA translocation into host cells and H. pylori-induced IL-8 secretion by gastric epithelial cells; however, these proteins are not homologous to components of T4SSs in other bacterial species. Scanning electron microscopy analysis reveals that these proteins are involved in the formation of pili at the interface between H. pylori and gastric epithelial cells. ΔcagI and ΔcagL mutant strains fail to form pili, whereas a ΔcagH mutant strain exhibits a hyperpiliated phenotype and produces pili that are elongated and thickened compared to those of the wild-type strain. This suggests that pilus dimensions are regulated by CagH. A conserved C-terminal hexapeptide motif is present in CagH, CagI, and CagL. Deletion of these motifs results in abrogation of CagA translocation and IL-8 induction, and the C-terminal motifs of CagI and CagL are required for formation of pili. In summary, these results indicate that CagH, CagI, and CagL are components of a T4SS subassembly involved in pilus biogenesis, and highlight the important role played by unique constituents of the H. pylori cag T4SS.  相似文献   

10.
11.
12.
Cendron L  Zanotti G 《The FEBS journal》2011,278(8):1223-1231
Helicobacter pylori cytotoxin-associated gene-pathogenicity island (cagPAI) is responsible for the secretion of the CagA effector through a type IV secretion system (T4SS) apparatus, as well as of peptidoglycan and possibly other not yet identified factors. Twenty-nine different polypeptide chains are encoded by this cluster of genes, although only some of them show a significant similarity with the constitutive elements of well characterized secretion systems from other bacteria. The other cagPAI components represent almost unique proteins in this scenario. The majority of the T4SS include approximately fifteen components, taking into account either the transmembrane complex subunits, ATPases or substrate factors. The composition of the cagPAI is very complex: it includes proteins most likely involved at different levels in the pilus assembly, stabilization and processing of secreted substrate, as well as regulatory particles possibly involved in the control of the entire apparatus. Despite recent findings with respect to components that play a role in the interaction with the host cell, the function of several cagPAI proteins remains unclear or unknown. This is particularly true for those that represent unique members with no clear similarity to those of other T4SS and no obvious evidence of involvement in the secretion of CagA or induction of pro-inflammatory responses. We summarize what is known about these accessory components, both from a molecular and structural point of view, as well as their putative physiological role.  相似文献   

13.
Type IV secretion systems are increasingly recognized as important virulence determinants of Gram-negative bacterial pathogens. While the examination of several type IV-secreted proteins suggested that their secretion depends on C-terminal signals, the nature of these signals and their conservation among different systems remain unclear. Here, we have characterized the secretion signal of the Helicobacter pylori CagA protein, which is translocated by the Cag type IV secretion apparatus into eucaryotic cells. The production of fusion proteins of CagA and green fluorescent protein (GFP) did not result in translocation of GFP to epithelial cells, but a fusion of GFP with the CagA C-terminus exerted a dominant-negative effect upon wild-type CagA translocation. We show that CagA translocation depends on the presence of its 20 C-terminal amino acids, containing an array of positively charged residues. Interestingly, these positive charges are neither necessary nor sufficient for CagA translocation, but replacing the C-terminal region of CagA with that of other type IV-secreted proteins reconstitutes CagA translocation competence. Using a novel type IV translocation assay with a phosphorylatable peptide tag, we show that removal of the N-terminal part of the CagA protein renders the protein translocation-incompetent as well. Thus, the Cag type IV secretion system seems to diverge from other systems not only with respect to its composition and architecture, but also in terms of substrate recognition and transport.  相似文献   

14.
15.
16.
The human pathogen Helicobacter pylori colonizes the mucous layer of the stomach. During parasitic infection, freely swimming bacteria adhere to the gastric epithelial cells and trigger intracellular signalling pathways. This process requires the translocation of the effector protein CagA into the host cell through a specialized type IV secretion system encoded in the cag pathogenicity island. Following transfer, CagA is phosphorylated on tyrosine residues by a host cell kinase. Here, we describe how the tyrosine phosphorylation of CagA is restricted to a previously identified repeated sequence called D1. This sequence is located in the C-terminal half of the protein and contains the five-amino-acid motif EPIYA, which is amplified by duplications in a large fraction of clinical isolates. Tyrosine phosphorylation of CagA is essential for the activation process that leads to dramatic changes in the morphology of cells growing in culture. In addition, we observed that two members of the src kinases family, c-Src and Lyn, account for most of the CagA-specific kinase activity in host cell lysates. Thus, CagA translocation followed by tyrosine phosphorylation at the EPIYA motifs promotes a growth factor-like response with intense cytoskeletal rearrangements, cell elongation effects and increased cellular motility.  相似文献   

17.
Wang H  Han J  Chen D  Duan X  Gao X  Wang X  Shao S 《Current microbiology》2012,64(2):191-196
Helicobacter pylori is a highly successful human-specific gastric pathogen that infects up to 50% of the world’s population. Virulent H. pylori isolates harbor the cytotoxin-associated genes pathogenicity island (cag-PAI), which encodes a type IV secretion system that translocates bacterial effector (e.g., CagA oncoprotein) molecules into host cells. Although some cag-PAI genes are shown to be required for CagA delivery or localization, the majority have no known function. In the current study, the authors performed a cell components fractionation assay and showed that CagI, one of the cag-PAI proteins located in the bacterial membrane, was not translocated into host cells. The homologous recombination method then was used to construct the isogenic mutant of H. pylori cagI, and the translocation assay was performed. The results showed that the isogenic mutant of H. pylori NCTC 11637 cagI could cause a reduction in the degree of CagA translocation. Overall, the results suggested that CagI might be an accessory component of the CagA secretion system not translocated into host cells and that it is located in the bacterial membrane.  相似文献   

18.
Helicobacter pylori (Hp) employs a multi-component type IV secretion system (T4SS) to secrete the effector protein CagA into the cytosol of infected host cells. A longstanding challenge has been to identify the host cell receptor(s) involved. Two recent studies have independently unveiled human β(1) integrin as the receptor but are divided over which T4SS proteins bind to β(1) integrin. Here we revisit the two models in light of previous findings and recent progress in the field. More concerted efforts are required to fully understand the complex T4SS mechanisms that underpin Hp pathogenesis.  相似文献   

19.
Exported proteases of Helicobacter pylori (H. pylori) are potentially involved in pathogen-associated disorders leading to gastric inflammation and neoplasia. By comprehensive sequence screening of the H. pylori proteome for predicted secreted proteases, we retrieved several candidate genes. We detected caseinolytic activities of several such proteases, which are released independently from the H. pylori type IV secretion system encoded by the cag pathogenicity island (cagPAI). Among these, we found the predicted serine protease HtrA (Hp1019), which was previously identified in the bacterial secretome of H. pylori. Importantly, we further found that the H. pylori genes hp1018 and hp1019 represent a single gene likely coding for an exported protein. Here, we directly verified proteolytic activity of HtrA in vitro and identified the HtrA protease in zymograms by mass spectrometry. Overexpressed and purified HtrA exhibited pronounced proteolytic activity, which is inactivated after mutation of Ser205 to alanine in the predicted active center of HtrA. These data demonstrate that H. pylori secretes HtrA as an active protease, which might represent a novel candidate target for therapeutic intervention strategies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号