共查询到20条相似文献,搜索用时 15 毫秒
1.
Nancy S. Ossenberg 《American journal of physical anthropology》1970,33(3):357-371
Following the elucidation by geneticists of the nature of minor skeletal variants in the mouse, anthropologists have stressed the potential of these traits for tracing the affinities and movements of extinct human populations. Earlier Sullivan observed that discrete traits could be particularly valuable where artificial cranial deformation limits the use of craniometry. Twenty-eight minor variants were studied in bifronto-occipitally deformed and undeformed skulls of a sample of 78 from a single Hopewell mound. The pattern of frequency differences between deformed and undeformed with respect to traits at the back of the vault and in the frontal region, interpreted in developmental terms, reveals a hypostotic effect in these regions in the deformed skull; while, in contrast, traits of the lateral vault, facial skeleton and cranial base point to a general hyperostotic effect in these regions. Each of three emissaria tends to be more constant in the deformed. That minor cranial variants manifest a plastic response to this type of environmentally-imposed stress is consistent with the nature of such variants as elucidated by genetics research in mice. The findings suggest that deformed crania should be excluded from population studies in which genetic divergence between groups is estimated in terms of cranial trait frequencies. 相似文献
2.
M. Linde‐Medina 《Journal of evolutionary biology》2016,29(9):1873-1878
Recent comparative studies have indicated the existence of a common cranial evolutionary allometric (CREA) pattern in mammals and birds, in which smaller species have relatively smaller faces and bigger braincases than larger species. In these studies, cranial allometry was tested using a multivariate regression between shape (described using landmarks coordinates) and size (i.e. centroid size), after accounting for phylogenetic relatedness. Alternatively, cranial allometry can be determined by comparing the sizes of two anatomical parts using a bivariate regression analysis. In this analysis, a slope higher or lower than one indicates the existence of positive or negative allometry, respectively. Thus, in those species that support the CREA ‘rule’, positive allometry is expected for the association between face size and braincase size, which would indicate that larger species have disproportionally larger faces. In this study, I applied these two approaches to explore cranial allometry in 83 Galliformes (Aves, Galloanserae), ranging in mean body weight from 30 g to 2.5 kg. The multivariate regression between shape and centroid size revealed the existence of a significant allometric pattern resembling CREA, whereas the second analysis revealed a negative allometry for beak size and braincase size (i.e. contrary to the CREA ‘rule’, larger galliform species have disproportionally shorter beaks than smaller galliform species). This study suggests that the presence of CREA may be overestimated when using cranium size as the standard measurement. 相似文献
3.
W. R. Pitchers C. P. Klingenberg T. Tregenza J. Hunt I. Dworkin 《Journal of evolutionary biology》2014,27(10):2163-2176
The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterize the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild‐caught and common‐garden‐reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. 相似文献
4.
J T Richtsmeier J M Cheverud J E Buikstra 《American journal of physical anthropology》1984,64(3):213-222
This study addresses the relationship between cranial metric variables and nonmetric traits using the skeletal sample of rhesus macaques from Cayo Santiago. Discriminant function analysis is used to study the metric differences between macaque crania grouped according to the presence or absence of nine nonmetric traits. The computation of total structure coefficients from the discriminant function analyses provides information regarding how closely each metric variable is related to the discriminant functions derived. Total structure coefficients have not been used previously in the study of the relationship between metric and nonmetric traits. The results of the analysis are interpreted using an explicit approach to cranial morphogenesis-functional cranial analysis. It is concluded that the relationship between cranial metric and nonmetric traits is explicable in terms of a common developmental pathway shared by the two types of traits. Identification of the specific etiology of nonmetric traits depends on future anatomical studies or organisms throughout the period of nonmetric trait development. 相似文献
5.
Jaimi A. Gray Emma Sherratt Mark N. Hutchinson Marc E. H. Jones 《Evolution; international journal of organic evolution》2019,73(11):2216-2229
A defining character of adaptive radiations is the evolution of a diversity of morphological forms that are associated with the use of different habitats, following the invasion of vacant niches. Island adaptive radiations have been thoroughly investigated but continental scale radiations are more poorly understood. Here, we use 52 species of Australian agamid lizards and their Asian relatives as a model group, and employ three‐dimensional geometric morphometrics to characterize cranial morphology and investigate whether variation in cranial shape reflects patterns expected from the ecological process of adaptive radiation. Phylogenetic affinity, evolutionary allometry, and ecological life habit all play major roles in the evolution of cranial shape in the sampled lizards. We find a significant association between cranial shapes and life habit. Our results are in line with the expectations of an adaptive radiation, and this is the first time detailed geometric morphometric analyses have been used to understand the selective forces that drove an adaptive radiation at a continental scale. 相似文献
6.
The degree to which the ontogeny of organisms could facilitate our understanding of phylogenetic relationships has long been a subject of contention in evolutionary biology. The famed notion that ‘ontogeny recapitulates phylogeny’ has been largely discredited, but there remains an expectation that closely related organisms undergo similar morphological transformations throughout ontogeny. To test this assumption, we used three‐dimensional geometric morphometric methods to characterize the cranial morphology of 10 extant crocodylian species and construct allometric trajectories that model the post‐natal ontogenetic shape changes. Using time‐calibrated molecular and morphological trees, we employed a suite of comparative phylogenetic methods to assess the extent of phylogenetic signal in these trajectories. All analyses largely demonstrated a lack of significant phylogenetic signal, indicating that ontogenetic shape changes contain little phylogenetic information. Notably, some Mantel tests yielded marginally significant results when analysed with the morphological tree, which suggest that the underlying signal in these trajectories is correlated with similarities in the adult cranial morphology. However, despite these instances, all other analyses, including more powerful tests for phylogenetic signal, recovered statistical and visual evidence against the assumption that similarities in ontogenetic shape changes are commensurate with phylogenetic relatedness and thus bring into question the efficacy of using allometric trajectories for phylogenetic inference. 相似文献
7.
8.
Examination of historical persistence of integration patterns provides an important insight into understanding the origin and evolution of complex traits. Specifically, the distinct effects of developmental and functional integration on the evolution of complex traits are often overlooked. Because patterns of functional integration are commonly shaped by selection exerted by the external environment, whereas patterns of developmental integration can be determined by relatively environment-independent selection for developmental homeostasis, examination of historical persistence of morphological integration patterns among species should reveal the relative importance of current selection in the evolution of complex traits. We compared historical persistence of integration patterns produced by current developmental versus ecological requirements by examining the evolution of complex mandibular structures in nine species of soricid shrews. We found that, irrespective of phylogenetic relatedness of species, patterns of developmental and functional integration were highly concordant, suggesting that strong selection for developmental homeostasis favors concordant channeling of both internal and external variation. Overall, our results suggest that divergence in mandible shape among species closely follows variation in functional demands and ecological requirements regardless of phylogenetic relatedness among species. 相似文献
9.
Paula N. Gonzalez S. Ivan Perez Valeria Bernal 《American journal of physical anthropology》2010,142(3):367-379
To date, differences in craniofacial robusticity among modern and fossil humans have been primarily addressed by analyzing adult individuals; thus, the developmental basis of such differentiation remains poorly understood. This article aims to analyze the ontogenetic development of craniofacial robusticity in human populations from South America. Geometric morphometric methods were used to describe cranial traits in lateral view by using landmarks and semilandmarks. We compare the patterns of variation among populations obtained with subadults and adults to determine whether population‐specific differences are evident at early postnatal ontogeny, compare ontogenetic allometric trajectories to ascertain whether changes in the ontogeny of shape contribute to the differentiation of adult morphologies, and estimate the amount of size change that occurs during growth along each population‐specific trajectory. The results obtained indicate that the pattern of interpopulation variation in shape and size is already established at the age of 5 years, meaning that processes acting early during ontogeny contribute to the adult variation. The ontogenetic allometric trajectories are not parallel among all samples, suggesting the divergence in the size‐related shape changes. Finally, the extension of ontogenetic trajectories also seems to contribute to shape variation observed among adults. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc. 相似文献
10.
Cheverud and Buikstra (1981) demonstrated a tendency for nonmetric traits representing the number of foramina to have lower heritabilities than those representing hyperstotic or hypostotic traits in a sample of rhesus macaques. Based on this observation, Cheverud and Buikstra hypothesize that differences in the heritability of the two sets of traits may be due to differences in trait etiology. This study addresses the proposed relationship between trait heritability and etiology. Heritability values are calculated for 35 cranial nonmetric traits in a sample of 320 randombred mice using analysis of variance. The results are minimally consistent with the etiological hypothesis, but only 4 of the 35 traits showed statistically significant heritability values. These results are discussed with reference to the assumption that nonmetric traits have a strong genetic component. It is concluded that the developmental pathways that genetic variation traverses before being expressed in the form of nonmetric traits must be understood before variation in nonmetric traits can be used to its fullest potential. 相似文献
11.
Artificial cranial deformations (ACD) are a widespread cultural practice found in numerous historical and prehistoric contexts. Their study can yield valuable insight into craniofacial growth, specifically into the interactions between neurocranial and basicranial modules. This study seeks to reinvestigate the presumed effect of ACD on basicranial and masticatory elements by applying a 3D geometric morphometric approach to CT scans. A total of 51 French and Bolivian skulls, representing anteroposterior and circumferential deformations and including undeformed individuals, were scanned, and 3D landmarks were submitted to between-group principal components analysis and two-block partial least-squares analysis. Our results illustrate changes in basicranial shape and in cranial base angles induced by ACD, as well as in masticatory geometry, namely in the relative position of the mandibular fossae. Furthermore, our findings highlight differential effects of the various deformation types, which suggest that patterns of covariation between modified vaults and their associated basicrania are more complex than previously assumed, thereby stressing the degree of plasticity in human craniofacial growth. 相似文献
12.
Fatemeh Tabatabaei Yazdi Dominique Adriaens Jamshid Darvish 《Journal of Zoological Systematics and Evolutionary Research》2012,50(2):157-164
The existence of cryptic species in the midday jird (Meriones meridianus) has been suggested in literature, although based on little empirical data to support this hypothesis. In this study, a two‐dimensional landmark‐based geometric morphometric approach was used to investigate whether patterns in intraspecific variation in skull shape and size exist, using 110 skull specimens from more than 20 different localities along the distribution range of M. meridianus. This is the first study of morphological differences on such a big sample size and geographical range, and it tries to find whether skull shape variation in this species is best described as being clinal or rather reflecting cryptic diversity. The latter seems to be the case, as a dimorphic skull phenotype was found, reflecting a geographic disparity between the Middle East and the Far East specimens both in shape and in size. Distinct cranial differences were found in the overall cranial size and, also at the level of the inflation of the bulla, the elongation of the nasal, the length of the teeth row and the incisive foramen, as well as the distance in between the latter two. It thus seems that M. meridianus from Middle East is morphologically distinct from that of the Far East. Furthermore, our results also demonstrate that clinal variation could explain variation within Middle East populations, whereas a more heterogenous pattern is found for those of the Far East. The hypothesis that the observed phenotypic variation may reflect cryptic species is discussed, with the recommendation for a thorough taxonomical revision of the genus in the region. 相似文献
13.
J M Cheverud L A Kohn L W Konigsberg S R Leigh 《American journal of physical anthropology》1992,88(3):323-345
Artificial reshaping of the cranial vault has been practiced by many human groups and provides a natural experiment in which the relationships of neurocranial, cranial base, and facial growth can be investigated. We test the hypothesis that fronto-occipital artificial reshaping of the neurocranial vault results in specific changes in the cranial base and face. Fronto-occipital reshaping results from the application of pads or a cradle board which constrains cranial vault growth, limiting growth between the frontal and occipital and allowing compensatory growth of the parietals in a mediolateral direction. Two skeletal series including both normal and artificially modified crania are analyzed, a prehistoric Peruvian Ancon sample (47 normal, 64 modified crania) and a Songish Indian sample from British Columbia (6 normal, 4 modified). Three-dimensional coordinates of 53 landmarks were measured with a diagraph and used to form 9 finite elements as a prelude to finite element scaling analysis. Finite element scaling was used to compare average normal and modified crania and the results were evaluated for statistical significance using a bootstrap test. Fronto-occipitally reshaped Ancon crania are significantly different from normal in the vault, cranial base, and face. The vault is compressed along an anterior-superior to posterior-inferior axis and expanded along a mediolateral axis in modified individuals. The cranial base is wider and shallower in the modified crania and the face is foreshortened and wider with the anterior orbital rim moving inferior and posterior towards the cranial base. The Songish crania display a different modification of the vault and face, indicating that important differences may exist in the morphological effects of fronto-occipital reshaping from one group to another. 相似文献
14.
15.
Alan Bilsborough 《Journal of human evolution》1973,2(5):387-403
Multivariate analysis is used to describe the total morphological pattern of the hominid cranial vault, and to obtain distances between samples of Plio-Pleistocene Hominidae. Such techniques provide a means of quantifying phyletic change within a lineage, and therefore usefully complement the traditional Linnean nomenclature. When divided by elapsed time, the multivariate distances between groups provide a measure of the rate of evolution of a character complex and such data are given for the hominid cranial vault over the Quaternary as a whole, and for more detailed changes within Upper Pleistocene H. sapiens. The evolutionary significance of the observed rates, and their implications for the construction of phyletic schemes, are discussed. 相似文献
16.
Beatriz Chamero Ángela D. Buscalioni Jesús Marugán‐Lobón 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(3):600-618
To date, all statements about evolutionary morphological transformation in Crocodylia have essentially been based on qualitative observations. In the present study, we assessed the morphological variation and covariation (integration) between the scapula, coracoid, humerus, radius, and ulna of 15 species of Crocodylidae, Alligatoridae, and Gavialis + Tomistoma using three‐dimensional geometric morphometrics. The results obtained reveal that the variation of elements within species (intraspecific) is large. However, despite this variability, variation across species (interspecific) is mainly concentrated in two dimensions where the disparity is constrained: ‘robusticity’ and ‘twist’ (forelimbs) and ‘robusticity’ and ‘flexion’ (pectoral girdle). Robusticity (first dimension of variation) embodies a set of correlated geometrical features such as the broadening of the girdle heads and blades, or the enlargement of proximal and distal bone ends. The twist is related to the proximal and/or distal epiphyses in the forelimb elements, and flexion of the scapula and coracoid blades comprises the second dimension of variation. In all crocodylians, forelimb integration is characterized by the strong correlations of a humerus–ulna–radius triad and by a radius–ulna pair, thus forming a tight forelimb module. Unexpectedly, we found that the humerus and coracoid form the most integrated pair, whereas the scapula is a more variable and relatively independent element. The integration pattern of the humerus–coracoid pair distinguishes a relatively robust configuration in alligatorids from that of the remainder groups. The patterns of variation and integration shared by all the analyzed species have been interpreted as an inherited factor, suggesting that developmental and functional requirements would have interacted in the acquisition of a semi‐aquatic and versatile locomotion at the Crocodylia node at least 65 Mya. Our findings highlight the need to incorporate the humerus–coracoid pair in biodynamic and biomechanical studies. © 2012 The Linnean Society of London 相似文献
17.
Mitteroecker P Bookstein F 《Evolution; international journal of organic evolution》2008,62(4):943-958
Patterns of morphological integration and modularity among shape features emerge from genetic and developmental factors with varying pleiotropic effects. Factors or processes affecting morphology only locally may respond to selection more easily than common factors that may lead to deleterious side effects and hence are expected to be more conserved. We briefly review evidence for such global factors in primate cranial development as well as for local factors constrained to either the face or the neurocranium. In a sample comprising 157 crania of Homo sapiens, Pan troglodytes, and Gorilla gorilla, we statistically estimated common and local factors of shape variation from Procrustes coordinates of 347 landmarks and semilandmarks. Common factors with pleiotropic effects on both the face and the neurocranium account for a large amount of shape variation, but mainly by extension or truncation of otherwise conserved developmental pathways. Local factors (modular shape characteristics) have more degrees of freedom for evolutionary change than mere ontogenetic scaling. Cranial shape is similarly integrated during development in all three species, but human evolution involves dissociation among several characteristics. The dissociation has probably been achieved by evolutionary alterations and by the novel emergence of local factors affecting characteristics that are controlled at the same time by the common factors. 相似文献
18.
19.
Trine Bottos Olsen Daniel García-Martínez Chiara Villa 《American journal of physical anthropology》2023,180(1):224-234
This study aimed to test the performance of 3D digitizer, CT scanner, and surface scanner in detecting cranial fluctuating asymmetry. Sets of 32 landmarks (6 in the midline and 13 bilateral) were acquired from 14 archeological crania using a 3D digitizer, and from 3D models generated from a CT scanner and surface scanner using Viewbox 4. Levels of shape variation were analyzed in MorphoJ using Procrustes analysis of variance and Principal component analysis. Intra-observer error accounted for 1.7%, 1.8%, and 4.5% of total shape variation for 3D digitizer, CT scanner, and surface scanner respectively. Fluctuating asymmetry accounted for 15%–16% of total shape variation. Variation between techniques accounted for 18% of total shape variation. We found a higher level of missing landmarks in our surface scan data than for both 3D digitizer and CT scanner data, and both 3D model-based techniques sometimes obscured taphonomic damage. All three 3D techniques are appropriate for measuring cranial fluctuating asymmetry. We advise against combining data collected with different techniques. 相似文献
20.
Logical connections exist between evolutionary modularity and heterochrony, two unifying and structuring themes in the expanding field of evolutionary developmental biology. The former sees complex phenotypes as being made up of semi-independent units of evolutionary transformation; the latter requires such a modular organization of phenotypes to occur in a localized or mosaic fashion. This conceptual relationship is illustrated here by analyzing the evolutionary changes in the cranidial ontogeny of two related species of Cambrian trilobites. With arguments from comparative developmental genetics and functional morphology, we delineate putative evolutionary modules within the cranidium and examine patterns of evolutionary changes in ontogeny at both global and local scales. Results support a case of mosaic heterochrony, that is, a combination of local heterochronies affecting the different parts individuated in the cranidium, leading to the complex pattern of allometric repatterning observed at the global scale. Through this example, we show that recasting morphological analyses of complex phenotypes with a priori knowledge or hypotheses about their organizational and variational properties can significantly improve our interpretation and understanding of evolutionary changes among related taxa, fossil and extant. Such considerations open avenues to investigate the large-scale dynamics of modularity and its role in phenotypic evolution. 相似文献