首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A. M. Hoogwerf  M. Akam    D. Roberts 《Genetics》1988,118(4):665-670
We describe a genetic analysis of the region 68C8-69B5 defined by Df(3L)vin-7. We have induced 35 new lethal mutations in this region, which together with 20 existing lethal mutations, visible mutations, genes identified by protein products and one gene deduced from complementation data fall into 37 complementation groups in this 35-band interval. Using existing and newly induced deficiencies we have assigned these to 11 intervals defined by deficiency breakpoints. Those mutations which fell in the same breakpoint interval as the Lsp-2 gene, which codes for the abundant larval serum protein 2, were the subject of detailed study. None was rescued by the active Lsp-2 gene transformed on to chromosome II and we conclude that, as yet, we have no lethal mutations of Lsp-2.  相似文献   

3.
The TUP1 and CYC8 (= SSN6) genes of Saccharomyces cerevisiae play a major role in glucose repression. Mutations in either TUP1 or CYC8 eliminate or reduce glucose repression of many repressible genes and induce other phenotypes, including flocculence, failure to sporulate, and sterility of MAT alpha cells. The TUP1 gene was isolated in a screen for genes that regulate mating type (V.L. MacKay, Methods Enzymol. 101:325-343, 1983). We found that a 3.5-kb restriction fragment was sufficient for complete complementation of tup1-100. The gene was further localized by insertional mutagenesis and RNA mapping. Sequence analysis of 2.9 kb of DNA including TUP1 revealed only one long open reading frame which predicts a protein of molecular weight 78,221. The predicted protein is rich in serine, threonine, and glutamine. In the carboxyl region there are six repeats of a pattern of about 43 amino acids. This same pattern of conserved residues is seen in the beta subunit of transducin and the yeast CDC4 gene product. Insertion and deletion mutants are viable, with the same range of phenotypes as for point mutants. Deletions of the 3' end of the coding region produced the same mutant phenotypes as did total deletions, suggesting that the C terminus is critical for TUP1 function. Strains with deletions in both the CYC8 and TUP1 genes are viable, with phenotypes similar to those of strains with a single deletion. A deletion mutation of TUP1 was able to suppress the snf1 mutation block on expression of the SUC2 gene encoding invertase.  相似文献   

4.
Tzeng WP  Frey TK 《Journal of virology》2003,77(17):9502-9510
Rubella virus (RUB) replicons with an in-frame deletion of 507 nucleotides between two NotI sites in the P150 nonstructural protein (DeltaNotI) do not replicate (as detected by expression of a reporter gene encoded by the replicon) but can be amplified by wild-type helper virus (Tzeng et al., Virology 289:63-73, 2001). Surprisingly, virus with DeltaNotI was viable, and it was hypothesized that this was due to complementation of the NotI deletion by one of the virion structural protein genes. Introduction of the capsid (C) protein gene into DeltaNotI-containing replicons as an in-frame fusion with a reporter gene or cotransfection with both DeltaNotI replicons and RUB replicon or plasmid constructs containing the C gene resulted in replication of the DeltaNotI replicon, confirming the hypothesis that the C gene was the structural protein gene responsible for complementation and demonstrating that complementation could occur either in cis or in trans. Approximately the 5' one-third of the C gene was necessary for complementation. Mutations that prevented translation of the C protein while minimally disturbing the C gene sequence abrogated complementation, while synonymous codon mutations that changed the C gene sequence without affecting the amino acid sequence at the 5' end of the C gene had no effect on complementation, indicating that the C protein, not the C gene RNA, was the moiety responsible for complementation. Complementation occurred at a basic step in the virus replication cycle, because DeltaNotI replicons failed to accumulate detectable virus-specific RNA.  相似文献   

5.
The gene CYC2 from the yeast Saccharomyces cerevisiae was previously shown to affect levels of mitochondrial cytochrome c by acting at a posttranslational step in cytochrome c biosynthesis. We report here the cloning and identification of the CYC2 gene product as a protein involved in import of cytochrome c into mitochondria. CYC2 encodes a 168-amino-acid open reading frame with at least two potential transmembrane segments. Antibodies against a synthetic peptide corresponding to the carboxyl terminus of the predicted sequence were raised. These antibodies recognize multiple bands on immunoblots of mitochondrial extracts. The intensities of these bands vary according to the gene dosage of CYC2 in various isogenic strains. Immunoblotting of subcellular fractions suggests that the CYC2 gene product is a mitochondrial protein. Deletion of CYC2 leads to accumulation of apocytochrome c in the cytoplasm. However, strains with deletions of this gene still import low levels of cytochrome c into mitochondria. The effects of cyc2 mutations are more pronounced in rho- strains than in rho+ strains, even though rho- strains that are CYC2+ contain normal levels of holocytochrome c. cyc2 mutations affect levels of iso-1-cytochrome c more than they do levels of iso-2-cytochrome c, apparently because of the greater susceptibility of apo-iso-1-cytochrome c to degradation in the cytoplasm. We propose that CYC2 encodes a factor that increases the efficiency of cytochrome c import into mitochondria.  相似文献   

6.
A 9.6-kilobase BamHI-SalI fragment carrying recJ+ was cloned into vector pBR322. Deletion and transposon mutagenesis were used to map the recJ gene on this fragment. The maxicell protein-labeling technique was used to correlate a functional recJ gene with the presence of a polypeptide of 53,000 apparent molecular weight. Two additional genes, one encoding two proteins of 26,000 and 25,000 Mr and the other encoding a 31,000-Mr protein, were mapped on a 3.7-kilobase HindIII-SalI subfragment with recJ. Functions for these adjacent genes are not known; however, insertion mutations in these genes lessen the expression of the putative recJ protein detected in maxicells. A 9.6-kilobase BamHI-SalI fragment carrying the temperature-sensitive mutation recJ147 was also cloned and used for complementation studies to identify other recJ mutations.  相似文献   

7.
8.
Two extragenic suppressors which allow temperature-sensitive htrA mutant Escherichia coli bacteria to grow at 42 degrees C and simultaneously acquire a cold-sensitive phenotype at 30 degrees C were isolated. The cold-sensitive phenotype exhibited by one of the mutants was used to clone the corresponding wild-type copy of the suppressor gene. This was done through complementation with a mini-mu plasmid E. coli DNA library, by selection for colonies which were no longer cold sensitive, at 30 degrees C. The cloned suppressor gene was shown to complement the cold-sensitive phenotype of both suppressor mutations. It was mapped to 68 min on the E. coli chromosome through hybridization to the Kohara library of overlapping lambda transducing bacteriophages, which covers the entire E. coli chromosome. The complementing gene was further subcloned on an 830-base-pair (bp) DNA fragment. DNA sequencing revealed the presence of an open reading frame (ORF) of 333 bp which could encode a protein of 12,359 Mr. Subcloning of various DNA fragments from within this 830-bp DNA fragment suggests that this ORF is most likely responsible for suppression of the cold-sensitive phenotype of the htrA suppressor bacteria. By using a T7 polymerase system to overproduce plasmid-encoded proteins, a protein of approximately 12,000 Mr was produced by this cloned DNA fragment. This ORF defines a previously undiscovered gene in E. coli, called sohA (suppressor of htrA).  相似文献   

9.
The ROX3 gene was identified during a hunt for mutants with increased expression of the heme-regulated CYC7 gene, which encodes the minor species of cytochrome c in the yeast Saccharomyces cerevisiae. The rox3 mutants caused a 10-fold increase in CYC7 expression both in the presence and absence of heme, had slightly increased anaerobic expression of the heme-activated CYC1 gene, and caused decreases in the anaerobic expression of the heme-repressed ANB1 gene and the aerobic expression of its heme-induced homolog. The wild-type ROX3 gene was cloned, and the sequence indicated that it encodes a 220-amino-acid protein. This protein is essential; deletion of the coding sequence was lethal. The coding sequence for beta-galactosidase was fused to the 3' end of the ROX3 coding sequence, and the fusion product was found to be localized in the nucleus, strongly suggesting that the wild-type protein carries out a nuclear function. Mutations in the rox3 gene showed an interesting pattern of intragenic complementation. A deletion of the 5' coding region complemented a nonsense mutation at codon 128 but could not prevent the lethality of the null mutation. These results suggest that the amino-terminal domain is required for an essential function, while the carboxy-terminal domain can be supplied in trans to achieve the wild-type expression of CYC7. Finally, RNA blots demonstrated that the ROX3 mRNA was expressed at higher levels anaerobically but was not subject to heme repression. The nuclear localization and the lack of viability of null mutants suggest that the ROX3 protein is a general regulatory factor.  相似文献   

10.
ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G.C additions at sites containing monotonous runs of three G.C base pairs. However, some (Formula: see text) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G.C base pairs.  相似文献   

11.
The tenth fibronectin type III (FN3) domain of human fibronectin (FNfn10), a prototype of the ubiquitous FN3 domain, is a small, monomeric beta-sandwich protein. In this study, we have bisected FNfn10 in each loop to generate a total of six fragment pairs. We found that fragment pairs bisected at multiple loops of FNfn10 show complementation in vivo as tested with a yeast two-hybrid system. The dissociation constant of these fragment pairs determined in vitro were as low as 3 nM, resulting in one of the tightest fragment complementation systems reported so far. Furthermore, we show that the affinity of fragment complementation is correlated with the stability of the uncut parent protein. Exploring this correlation, we screened a yeast two-hybrid library of one fragment and identified mutations that suppress the effect of a destabilizing mutation in the other fragment. One of the identified mutations significantly increased the stability of the uncut wild-type protein, proving that fragment complementation can be used as a novel strategy for the selection of proteins with enhanced stability.  相似文献   

12.
Direct cloning of the trxB gene that encodes thioredoxin reductase.   总被引:6,自引:2,他引:4  
A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase.  相似文献   

13.
14.
15.
Some insertion mutations in Saccharomyces cerevisiae activate the expression of adjacent structural genes. The CYC7-H2 mutation is a Ty1 insertion 5' to the iso-2-cytochrome c coding region of CYC7. The Ty1 insertion causes a 20-fold increase in CYC7 expression in a and alpha haploid cell types of S. cerevisiae. This activation is repressed in the a/alpha diploid cell type. Previous computer analysis of the CYC7-H2 Ty1 activator region identified two related sequences with homology both to mammalian enhancers and to a yeast a/alpha control site. A 112-base-pair (bp) DNA fragment encompassing one of these blocks of homology functioned as one component of the Ty1 activator. A 28-bp synthetic oligonucleotide with the wild-type homology block sequence was also functional. A single base pair mutation within the enhancer core of the synthetic 28-bp regulatory element reduced its activation ability to near background amounts. In addition, the 112-bp Ty1 fragment by itself functioned as a target for repression of adjacent gene expression in a/alpha diploid cells.  相似文献   

16.
17.
A cosmid gene library of the genome of Lactococcus lactis subsp. lactis 712 has been constructed in the broad host range plasmid pLAFR1 in Escherichia coli LE392. Three lactococcal genes from the bank were identified by heterologous complementation of specific mutations in strains of E. coli. A cosmid clone encoding a putative lactose transport gene was identified by complementing an E. coli lacY mutant. The complemented clone supported the uptake of 14C lactose in transport assays. The DNA fragment responsible was subcloned and localised to a 1.28 kb fragment of the lactococcal chromosome.  相似文献   

18.
19.
The structural and regulatory tetracycline resistance genes of transposon Tn10 are located on a 2,700-base pair HpaI fragment. We have used eight tetracycline-sensitive mutations in the 2,700-base pair fragment, cloned into two compatible plasmids, to demonstrate that two complementation groups are required for tetracycline resistance. By genetic recombination with plasmids containing the regulatory or structural regions for resistance, we have determined that both complementation groups reside within the structural region. The complementation groups, designated tetA and tetB, are proximal and distal, respectively, to the promoter for the tetracycline resistance structural region. The tetB mutations are in the portion of the structural region that is known to encode the 36,000-molecular-weight, inner-membrane TET protein. The levels of tetracycline resistance expressed during complementation suggest a complex interaction between the products of the tetA and tetB loci.  相似文献   

20.
Fragment complementation has been used to delineate the essential recognition elements for stable folding in Src homology 2 (SH2) domains by using NMR spectroscopy, alanine scanning, and surface plasmon resonance. The unfolded 9-kD and 5-kD peptide fragments formed by limited proteolytic digestion of the N-terminal SH2 domain from the p85alpha subunit of phosphatidylinositol 3'-kinase fold into an active native-like structure on interaction with one another. The corresponding 5-kD fragment of the homologous Src protein, however, was not capable of structurally complementing the p85 9-kD fragment, indicating that fragment complementation among these SH2 domains is sensitive to the sequence differences between the Src and p85 domains. Partial complementation and folding activity could be recovered with hybrid sequences of these SH2 domains. Complete alanine scanning of the 5-kD p85 fragment was used to identify the sequence recognition elements required for complex formation. The alanine substitutions in the p85 5-kD fragment that abolished binding affinity with the cognate 9-kD fragment correlate well with highly conserved residues among SH2 domains that are either integrally involved in core packing or found at the interface between fragments. Surprisingly, however, mutation of a nonconserved surface-exposed aspartic acid to alanine was found to have a significant effect on complementation. A single additional mutation of arginine to aspartic acid allowed for recovery of native structure and increased the thermal stability of the designed Src-p85 chimera by 18 degrees C. This modification appears to relieve an unfavorable surface electrostatic interaction, demonstrating the importance of surface charge interactions in protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号