首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一氧化氮合酶抑制剂L-NAME对大鼠脑缺血耐受诱导的影响   总被引:6,自引:0,他引:6  
Liu HQ  Li WB  Feng RF  Li QJ  Chen XL  Zhou AM  Zhao HG  Ai J 《生理学报》2003,55(2):219-224
采用大鼠四血管闭塞全脑缺血耐受模型和脑组织切片形态学方法,观察应用一氧化氮合酶(NOS)抑制剂L—NAME对大鼠海马CAl区脑缺血耐受(BIT)诱导的影响,在整体水平探讨一氧化氮(NO)在BIT诱导中的作用。54只Wistar大鼠凝闭双侧推动脉后分为6组:(1)假手术组(n=6);分离双侧颈总动脉,但不阻断脑血流;(2)损伤性缺血组(n=6):全脑缺血10min;(3)预缺血 损伤性缺血组(n=6):脑缺血预处理(CIP)3min,再灌注72h后行全脑缺血10min;(4)L—NAME组;分别于CIP前1h和后1、12及36h腹腔注射L—NAME(5mg/kg),每个时间点6只动物,其余步骤同预缺血 损伤性缺血组;(5)L—NAME L—精氨酸组(n=6):于CIP前1h腹腔注射L—NAME(5mg/kg)和L—精氨酸(300mg/kg),其它步骤同L—NAME组;(6)L—NAME 损伤性缺血组(n=6):于腹腔注射L—NAME(5mg/kg)72h后行全脑缺血10min。实验结果表明,(1)单纯10min全脑缺血可使海马CAl区组织学分级增加(表明损伤加重),神经元密度降低(P<0.01);(2)预缺血 损伤性缺血组的海马CAl区组织学分级、神经元密度与假手术组相比,无显著性差别(P>0.05);(3)L—NAME组中,应用L—NAME后海马CAl区组织学分级增加,神经元密度降低,与预缺血 损伤性缺血组相比有显著性差异(P<0.05),表明L—NAME可阻断CIP对神经元的保护作用;(4)L—NAME L—精氨酸组与L—NAME组相比,海马CAl区组织损伤明显减轻(P<0.05),但与预缺血 损伤性缺血组相比仍有显著性差别(P<0.05),提示L-精氨酸可部分逆转L—NAME的作用;(5)L—NAME 损伤性缺血组的组织学表现与损伤性缺血组相同(P>0.05)。这些结果表明,在整体情况下N0参与BIT的诱导。与CIP前1h及后1、12h给予L—NAME组相比,CIP后36h给予L—NAME对CIP保护作用的阻断效应明显减弱,提示N0在CIP后较早阶段即开始参与BIT的诱导。  相似文献   

2.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

3.
OBJECTIVE: To analyse the production of TNF-alpha and NO in euthyroid and hypothyroid newborns. PATIENTS: A cross-sectional study was conducted involving 10 newborns diagnosed with primary congenital hypothyroidism (CH; group A) and 10 euthyroid children (group B). RESULTS: There were undetectable plasma levels of TNF-alpha and NO in the hypothyroid children, however plasma levels of TNF-alpha (5.5 0.5 pg/ml) and NO (5.6 1.7 microM) were detected at normal levels in all euthyroid children. Moreover, expression of iNOS mRNA in PBMC, determined by RT-PCR, was negative in both groups of infants. CONCLUSION: TNF-alpha and NO production are both impaired in hypothyroid newborns. We report for the first time evidence of undetectable levels of TNF-alpha and NO in infants with CH.  相似文献   

4.
We hypothesized that nitric oxide (NO) may play a role in homeostatic sleep regulation. To test this hypothesis, we studied the sleep deprivation (SD)-induced homeostatic sleep responses after intraperitoneal administration of an NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, a cumulative dose of 100 mg/kg). Amounts and intensity of sleep were increased in response to 8 h of SD in control rats (n = 8). Sleep amounts remained above baseline for 16 h after SD followed by a negative rebound. Rapid eye movement sleep (REMS) and non-REMS (NREMS) intensities were elevated for 16 and 4 h, respectively. L-NAME treatment (n = 8) suppressed the rebound increases in NREMS amount and intensity. REMS rebound was attenuated by L-NAME in the first dark period after SD; however, a second rebound appeared in the subsequent dark period. REMS intensity did not increase after SD in L-NAME-injected rats. The finding that the NO synthase inhibitor suppressed rebound increases in NREMS suggests that NO may play a role as a signaling molecule in homeostatic regulation of NREMS.  相似文献   

5.
6.
Changes in endothelial nitric oxide synthase (eNOS) expression may be involved in the endothelium-dependent vasorelaxation dysfunction associated with several vascular diseases. In the present work, we demonstrate that eNOS mRNA contains a previously undescribed cis element in the 3' untranslated region (3' UTR). A U+C-rich segment in the 3' UTR is critical in complex formation with bovine aortic endothelial cell cytosolic proteins. Tumor necrosis factor alpha (TNF-alpha), which destabilizes eNOS mRNA, increased the binding activity of the cytosolic proteins in a time-dependent manner. These data suggest that endothelial cytosolic proteins bind to the 3' UTR of eNOS mRNA. These proteins may play a role in TNF-alpha-induced eNOS mRNA destabilization.  相似文献   

7.
Nitric oxide (NO) is one of the major signalling molecules in the mammalian body playing critical role in regulation of blood pressure, cardiovascular disease including stroke, immune activation, neuronal and cell communication. Moreover, hyper production of NO by the activity of nitric oxide synthase (NOS) involved in neuropathic pain, neurodegenerative disorders and stroke. Hence, the search on small molecules from the natural sources for the inhibition of NOS is desirable in therapeutic point of view. The elevated level of NO caused by NOS enzyme become a novel target in finding new inhibitors from natural sources as antistroke agents. The present study focuses on the molecular docking of quercetin and its analogues against NOS. The active site of the enzyme was docked with the ligand and pharmacological properties were analysed. From this result, we suggest the therapeutic property of quercetin and its analogues against NOS.  相似文献   

8.
The recently described L-arginine-dependent nitric oxide (NO) pathway has been proposed to interact synergistically with the TNF pathway in murine macrophage-mediated tumor cytotoxicity in vitro. We have employed an experimental construct in which these two pathways were independently expressed by two different effector cell populations. The TNF-dependent pathway was committed by murine 3T3 cells transfected with the cDNA encoding human pro-TNF. The NO pathway was executed by the murine EMT-6 mammary adenocarcinoma cell line treated with murine rIFN-gamma and LPS. Controls for the TNF pathway committed by the transfectant included lysis of the TNF-sensitive murine L929 cell in coculture, secretion of TNF, and absence of nitrite synthesis. For the NO pathway controls included lysis of the murine P815 mastocytoma cocultured with activated EMT-6 cells that had been pretreated with murine rIFN-gamma and LPS, production of nitrite by this activated effector cell, and an absence of TNF secretion. The target cell panel included L929, EMT-6, P815, and murine B16 melanoma and TU-5 sarcoma cell lines. All targets on this panel were susceptible to lysis by LPS-triggered murine bacillus Calmette-Guérin-activated macrophages. The 3T3 transfectant caused significant lysis of cocultured L929 and TU-5 targets. The EMT-6 effector cell only caused significant lysis of the P815 target. When both effector cells were cocultured with these target cells, lysis of the P815 target was observed to be additive or superadditive; however, for all the other targets, cytotoxicity was comparable with or subadditive compared with that seen with the 3T3 transfectant effector cell alone. Thus, these two pathways do not appear to account for the broad, potent tumoricidal activity observed for activated macrophages in vitro.  相似文献   

9.
10.
《Life sciences》1993,52(22):PL245-PL249
The hypothesis that an arginine-nitric oxide (NO) synthase-NO system mediates the morphine abstinence syndrome was tested in adult male rats implanted subcutaneosly for 3 days with one morphine (75 mg) pellet followed by naloxone-precipitated withdrawal (0.5 mg/kg). Injection with a NO synthase inhibitor, NG-nitro-L-arginine methyl ester (NAME, 100 mg/kg subcutaneous), shortly before naloxone-induced withdrawal significantly inhibited abstinence signs by 25–80%. Continuous infusion of NAME via subcutaneous osmotic pumps during the development of morphine physical dependence and during naloxone-precipitated withdrawal also inhibited morphine abstinence signs. In addition, treatment with isosorbide dinitrate, a NO donor, induced a quasi morphine-abstinence syndrome (QMAS) that was significantly suppressed by implantation of a morphine pellet 3 days before isosorbide dinitrate treatment. These results indicate that NO mediates part of the expression of the morphine abstinence syndrome.  相似文献   

11.
The purpose of this study was to examine the mechanisms by which liposome-encapsulated muramyl tripeptide phosphatidylethanolamine (L-MTP-PE) stimulates monocytes to produce tumor necrosis factor (TNF) and interleukin-1 (IL-1). We have previously shown that secretion of TNF protein occurred 2–4 h following incubation of monocytes with L-MTP-PE and that this stimulation of TNF production was associated with an increase in TNF mRNA. Increased intracellular interleukin-1 (IL-1) and IL-1 were not detected until 8 h after exposure to L-MTP-PE. To determine whether TNF played a role in the stimulation of IL-1 production by L-MTP-PE, normal human monocytes were incubated with L-MTP-PE or medium in the presence or absence of anti-TNF or anti IL-1 plus anti IL-1. Enhanced expression of IL-1 and IL-1 mRNA was inhibited at 4 h but not 24 h when monocytes were incubated with L-MTP-PE plus anti-TNF compared with L-MTP-PE alone. By contrast, enhanced expression of TNF mRNA wasnot inhibited at any time when monocytes were incubated with L-MTP-PE and anti-IL-1 plus anti-IL-1. These data indicate that the up-regulation of IL-1 seen in monocytes following L-MTP-PE exposure may be due in part to the production of TNF. The up-regulation of TNF, however, appears to be independent of IL-1 production.  相似文献   

12.
13.
14.
Inflammatory mouse peritoneal macrophages were activated by IFN-gamma in synergy with IL-2 or Lipid A to mediate TNF production for autocrine generation of cytotoxic nitric oxide (NO) to kill P815 or L1210 tumor targets. It was determined that for IL-2, but not Lipid A, to effectively trigger activation of IFN-gamma-primed macrophages, the tumor targets must be also present for interaction with effector macrophages to mediate the production of TNF and NO. IFN-gamma- and IL-2-activated macrophages from syngeneic DBA/2 and allogeneic C3H mice had identical MHC-unrestricted requirements for interaction with DBA/2 mouse-derived P815 and L1210 targets to mediate production of TNF and NO for tumor cytotoxicity. To further define the mechanistic requirements for macrophage-tumor target interaction, IFN-gamma- and IL-2-activated macrophages were separated from P815 targets in culture by a semipermeable membrane. Under these conditions, both TNF and NO were produced by the macrophage, which indicated that the requirement for tumor target-macrophage interaction may be due to a soluble factor produced by the target rather than to direct physical contact. This was confirmed by experiments in which 24-h cell-free culture fluids, derived from either P815 or L1210 tumor targets, substituted for the intact tumor cells in the stimulation of TNF mRNA synthesis and secretion with NO generation of TNF mRNA synthesis and secretion with NO generation by IFN-gamma- and IL-2-activated C3H or DBA/2 macrophages. The activity in 24-h culture fluids derived from P815 and L1210 tumor targets was tentatively designated as tumor-derived recognition factor(s) (TDRF) since it was produced constitutively by the tumor targets and synergized with IFN-gamma and IL-2 to induce macrophage production of TNF and NO for death of the same targets. A variety of nontransformed human and mouse fibroblasts, mouse spleen lymphocytes, and two adherent mouse fibrosarcomas did not produce detectable TDRF activity, whereas two mouse T lymphomas, EL4 and EL4.IL-2, produced TDRF activity similar to L1210 mouse leukemia and P815 mastocytoma. The C3H/MCA, a TDRF-nonproducing mouse fibrosarcoma, was susceptible to cytotoxicity mediated by macrophages activated by IFN-gamma and Lipid A, but not by IL-2 triggering. Exogenous TDRF derived from L1210 targets reconstituted the cytotoxic activity for C3H/MCA MCA targets mediated by IFN-gamma- and IL-2-activated macrophages accompanied by the production of TNF and cytotoxic NO.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Heat stroke is a life threatening illness characterized by a core body temperature of >40 °C, delirium and convulsions, and often results in multi-organ dysfunction, due to the release of endotoxin through the intestinal wall into the circulation. While playing a major role in the gastrointestinal tract permeability changes seen in Crohn's disease, it is not clear whether tumor necrosis factor alpha (TNF-α) mediates the increase in intestinal permeability and the release of endotoxin into the circulation in heat stroke. The aim of the present study was to determine the acute effects of a single dose of TNF-α antibody on gut permeability in rats during heat stress. Fifty-five Sprague-Dawley rats (28 male and 27 female) were treated with either saline or infliximab (a monoclonal antibody to TNF-α), anesthetized with pentobarbitone (50 mg kg−1) and then exposed to either normothermic conditions or an ambient temperature of between 41 and 42 °C for 70 min. Fluorescent isothiocyanate labeled dextrans (FITC-dextrans) were administered intragastrically as a marker of intestinal permeability. Liver enzymes, endotoxin and TNF-α were analyzed in the blood. Exposure to a heat stress significantly increased intestinal permeability to FITC-dextrans compared to the controls (P<0.05). Infliximab did not have an effect on the intestinal permeability to the FITC-dextrans. Heat stress had no significant effect on liver enzymes or endotoxin concentration versus controls (P>0.05). TNF-α was not detectable in any of the samples. TNF-α did not mediate the release of endotoxin into the circulation after an acute bout of heat stroke.  相似文献   

16.
Following infection with Toxoplasma gondii, certain strains of mice, such as BALB/c, are genetically resistant to development of toxoplasmic encephalitis (TE) and establish a latent chronic infection as do humans. Thus, these animals appear to be a suitable model to analyze the mechanism of resistance to TE. Since the mechanism for their genetic resistance is unknown, we examined the role of interferon-gamma (IFN-gamma) tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS) in the resistance using BALB/c-background IFN-gamma-deficient (IFN-gamma(-/-)) mice. IFN-gamma(-/-) and control mice were infected with the ME49 strain of T. gondii and treated with sulfadiazine to establish chronic infection. After discontinuing sulfadiazine, the IFN-gamma(-/-) mice all died, whereas the control mice all survived. Histological studies revealed remarkable inflammatory changes associated with large numbers of tachyzoites in brains of the IFN-gamma(-/-) mice but not in the control mice after discontinuation of sulfadiazine. Large amounts of mRNA for tachyzoite-specific SAG1 were detected in brains of only the IFN-gamma(-/-) mice. IFN-gamma mRNA was detected in brains of only the control mice, whereas mRNA for TNF-alpha and iNOS were detected in brains of both strains of mice. The amounts of the mRNA for TNF-alpha and iNOS did not differ between these mice. Treatment of IFN-gamma(-/-) mice with recombinant IFN-gamma prevented development of TE. These results demonstrate that IFN-gamma is crucial for genetic resistance of BALB/c mice against TE and that TNF-alpha and iNOS are insufficient to prevent TE in the absence of IFN-gamma.  相似文献   

17.
Li W  Chen L  Fan W  Feng C 《FEBS letters》2012,586(2):159-162
The FMN-heme interdomain (intraprotein) electron transfer (IET) kinetics in full length and oxygenase/FMN (oxyFMN) construct of human iNOS were determined by laser flash photolysis over the temperature range from 283 to 304K. An appreciable increase in the rate constant value was observed with an increase in the temperature. Our previous viscosity study indicated that the IET process is conformationally gated, and Eyring equation was thus used to analyze the temperature dependence data. The obtained magnitude of activation entropy for the IET in the oxyFMN construct is only one-fifth of that for the holoenzyme. This indicates that the FMN domain in the holoenzyme needs to sample more conformations before the IET takes place, and that the FMN domain in the oxyFMN construct is better poised for efficient IET.  相似文献   

18.
The peptide frenatin 3 is a major component of the skin secretion of the Australian giant tree frog, Litoria infrafrenata. Frenatin 3 is 22 amino acids in length, and shows neither antimicrobial nor anticancer activity. It inhibits the production of nitric oxide by the enzyme neuronal nitric oxide synthase at a micromolar concentration by binding to its regulatory protein, Ca2+ calmodulin, a protein known to recognize and bind amphipathic alpha-helices. The solution structure of frenatin 3 has been investigated using NMR spectroscopy and restrained molecular dynamics calculations. In trifluoroethanol/water mixtures, the peptide forms an amphipathic alpha-helix over residues 1-14 while the C-terminal eight residues are more flexible and less structured. The flexible region may be responsible for the lack of antimicrobial activity. In water, frenatin 3 exhibits some alpha-helical character in its N-terminal region.  相似文献   

19.
IFN-gamma primes murine macrophages to render them responsive for triggering by subactivating concentrations of bacterial LPS to mediate nonspecific tumor cytotoxicity. However, IFN-gamma also has direct anti-proliferative effects on transformed cells that serve as sensitive tumor targets for cytotoxic macrophages. We investigated the effects of preexposure of L1210 mouse leukemia and P815 mouse mastocytoma targets to rIFN-gamma on changes in their susceptibility to cytotoxicity by LPS-activated mouse peritoneal macrophages (PM). Co-incubation of inflammatory PM and either L1210 or P815 targets with IFN-gamma and LPS produced a classical synergistic cytotoxicity for both targets over that of IFN-gamma or LPS alone. Similar synergistic augmentation of cytotoxicity occurred when effector PM were preprimed for 24 h with IFN-gamma before testing for cytotoxicity of untreated targets. However, pretreatment of L1210 and P815 targets for 24 h with IFN-gamma (50 U) before assay produced divergent results in that L1210 was more susceptible, whereas P815 was less susceptible to cytotoxicity by LPS-activated macrophages. Similar results were obtained when both macrophages and targets were pretreated separately with IFN-gamma for 24 h before their combined assay for tumor cytotoxicity. Pretreatment of L1210 targets for 1, 4, or 24 h with IFN-gamma produced similar effects on their increased susceptibility to macrophage cytotoxicity. In contrast, P815 pretreated for 1 and 4 h with IFN-gamma showed an early increased susceptibility to macrophage cytotoxicity followed by a decrease after 24 h pretreatment. The pretreatment of L1210 or P815 targets with IFN-gamma before their exposure to LPS-activated macrophages had no effect on the production of TNF. However, there was a corresponding increase in nitric oxide generation by LPS-activated macrophages after their exposure to IFN-gamma pretreated L1210 targets and a decrease in the presence of IFN-gamma-pretreated P815 targets that correlated with their changes in susceptibility to macrophage killing. Nitric oxide generation by macrophages alone in response to LPS was found to be greater than when effector macrophages were exposed to the tumor targets and this was either increased by L1210 or decreased by P815 that had been pretreated with IFN-gamma. Our results indicate that IFN-gamma may act directly and differentially on tumor targets to alter their susceptibility for macrophage cytotoxicity, which was coupled to changes in the generation of cytotoxic nitric oxide, rather than TNF production by the macrophage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Abstract

The physiological responses of peanut seedlings exposed to low (5 µM) or high (200 µM) cadmium (Cd) concentration and the ability of sodium nitroprusside (SNP, a donor of NO) to reverse the harmful effects of Cd on peanut (Arachis hypogaea L.) were studied. Changes in plant growth parameters, chlorophyll content, antioxidant system, nutrient contents and Cd accumulation were investigated. The results showed that SNP and 5 µM Cd improved plant growth and chlorophyll content. Furthermore, antioxidative system was up-regulated, and as a result, the production rate of superoxide radical (O2??) was reduced. Moreover, the absorption of nutrient elements was not impacted, and Cd toxicity was not observed. However, 200 µM Cd had negative effects on the above measured parameters and dramatically increased the accumulation of Cd in all the plant organs. In the 200 µM Cd treatment, addition of 250 µM SNP stimulated plant growth and increased chlorophyll content. It also enhanced the regulation of antioxidative system and reduced the production rate of O2?? and malondialdehyde (MDA) content. Besides, SNP supply enhanced the absorption of nutrient elements and restrained the absorption and transport of Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号