首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix proteins play key roles in controlling the activities of osteoblasts and osteoclasts in bone remodeling. These bone-specific extracellular matrix proteins contain amino acid sequences that mediate cell adhesion, and many of the bone-specific matrix proteins also contain acidic domains that interact with the mineral surface and may orient the signaling domains. Here we report a fusion peptide design that is based on this natural approach for the display of signaling peptide sequences at biomineral surfaces. Salivary statherin contains a 15-amino acid hydroxyapatite binding domain (N15) that is loosely helical in solution. To test whether N15 can serve to orient active peptide sequences on hydroxyapatite, the RGD and flanking residues from osteopontin were fused to the C terminus. The fusion peptides bound tightly to hydroxyapatite, and the N15-PGRGDS peptide mediated the dose-dependent adhesion of Moalpha(v) melanoma cells when immobilized on the hydroxyapatite surface. Experiments with an integrin-sorted Moalpha(v) subpopulation demonstrated that the alpha(v)beta(3) integrin was the primary receptor target for the fusion peptide. Solid state NMR experiments showed that the RGD portion of the hydrated fusion peptide is highly dynamic on the hydroxyapatite surface. This fusion peptide framework may thus provide a straightforward design for immobilizing bioactive sequences on hydroxyapatite for biomaterials, tissue engineering, and vaccine applications.  相似文献   

2.
The interaction of streptavidin with various cell systems was studied using fluorescent derivatives of the protein. The native unprocessed form of streptavidin bound to cells at low levels and in a nonspecific manner. In contrast, both the truncated "core" streptavidin (the commercially available form) and the biotin-blocked unprocessed protein bound to cells in enhanced levels and in a specific, saturable manner. This suggests that the binding of biotin or cleavage of the terminal portion(s) of the native protein molecule causes conformational changes which lead to the exposure of sites which presumably interact with cell surface receptors. Peptide inhibition studies demonstrated that the majority of binding to cells appears to be dependent on RGD-like specificity, suggesting that the GRYDS sequence of the streptavidin molecule may exhibit such specificity. Indirect immunofluorescence assays revealed that the protein is associated mainly with the cell surface. Moreover, streptavidin was demonstrated to compete with specific monoclonal antibodies to the RGD-binding site on the GpIIbIIIa integrin of activated platelets, thus suggesting that streptavidin may facilitate binding to ubiquitous cell-surface adhesion receptors via RGD mimicry.  相似文献   

3.
Streptavidin binds at low levels and high affinity to cell surfaces, the cause of which can be traced to the occurrence of a sequence containing RYD (Arg-Tyr-Asp) in the protein molecule. This binding is enhanced in the presence of biotin. Cell-bound streptavidin can be displaced by fibronectin, as well as by RGD- and RYD-containing peptides. In addition, streptavidin can displace fibronectin from cell surfaces. The RYD sequence of streptavidin thus mimics RGD (Arg-Gly-Asp), the universal recognition domain present in fibronectin and other adhesion-related molecules. The observed adhesion to cells has no relevance to biotin-binding since the RYD sequence is not part of the biotin-binding site of streptavidin. Since the use of streptavidin in avidin-biotin technology is based on its biotin-binding properties, researchers are hereby warned against its indiscriminate use in histochemical and cytochemical studies.  相似文献   

4.
Mouse entactin derived from the extracellular matrix of M1536-B3 cells and from insect cells infected with a recombinant virus containing entactin sequences were shown to promote the attachment of mouse mammary tumor, human melanoma, and other cells. The cell attachment was inhibited by antibodies against mouse entactin but not by anti-fibronectin or anti-laminin antibodies. On a weight basis entactin was as effective as laminin in promoting the attachment of mouse mammary tumor cells. The attachment of cells to entactin was in part mediated by the integrin recognition RGD peptide sequence. This was demonstrated by the cell attachment properties of peptides derived from entactin which contained this sequence. Furthermore, the peptide RGDS could inhibit the attachment of mouse mammary tumor cells to entactin to approximately 60% of control. It is suggested that additional cell recognition sequences may be present in entactin. The direct binding of calcium ions to entactin was observed. It is probable that the binding sites reside in peptide sequences located toward the NH2 terminus region of entactin. This conclusion was supported by the demonstration that synthetic peptides, containing potential calcium binding sequences derived from entactin, bound calcium. In addition, a recombinant peptide containing the amino-terminal 330 amino acids of entactin also bound calcium ions. The significance of these properties of entactin is discussed.  相似文献   

5.
Cell adhesion to extracellular matrix components such as fibronectin has a complex basis, involving multiple determinants on the molecule that react with discrete cell surface macromolecules. Our previous results have demonstrated that normal and transformed cells adhere and spread on a 33-kD heparin binding fragment that originates from the carboxy-terminal end of particular isoforms (A-chains) of human fibronectin. This fragment promotes melanoma adhesion and spreading in an arginyl-glycyl-aspartyl-serine (RGDS) independent manner, suggesting that cell adhesion to this region of fibronectin is independent of the typical RGD/integrin-mediated binding. Two synthetic peptides from this region of fibronectin were recently identified that bound [3H]heparin in a solid-phase assay and promoted the adhesion and spreading of melanoma cells (McCarthy, J. B., M. K. Chelberg, D. J. Mickelson, and L. T. Furcht. 1988. Biochemistry. 27:1380-1388). The current studies further define the cell adhesion and heparin binding properties of one of these synthetic peptides. This peptide, termed peptide I, has the sequence YEKPGSP-PREVVPRPRPGV and represents residues 1906-1924 of human plasma fibronectin. In addition to promoting RGD-independent melanoma adhesion and spreading in a concentration-dependent manner, this peptide significantly inhibited cell adhesion to the 33-kD fragment or intact fibronectin. Polyclonal antibodies generated against peptide I also significantly inhibited cell adhesion to the peptide, to the 33-kD fragment, but had minimal effect on melanoma adhesion to fibronectin. Anti-peptide I antibodies also partially inhibited [3H]heparin binding to fibronectin, suggesting that peptide I represents a major heparin binding domain on the intact molecule. The cell adhesion activity of another peptide from the 33-kD fragment, termed CS1 (Humphries, M. J., A. Komoriya, S. K. Akiyama, K. Olden, and K. M. Yamada. 1987. J. Biol. Chem., 262:6886-6892) was contrasted with peptide I. Whereas both peptides promoted RGD-independent cell adhesion, peptide CS1 failed to bind heparin, and exogenous peptide CS1 failed to inhibit peptide I-mediated cell adhesion. The results demonstrate a role for distinct heparin-dependent and -independent cell adhesion determinants on the 33-kD fragment, neither of which are related to the RGD-dependent integrin interaction with fibronectin.  相似文献   

6.
The purpose of this study was to determine whether a heterodimeric complex immunologically related to the fibrinogen receptor could function as a thrombospondin (TSP) receptor in TSP-mediated cell-substratum adhesion of human melanoma cells. We found that polyclonal antibodies to the platelet GPIIb-IIIa complex, GPIIIa, and the human vitronectin receptor inhibited TSP-mediated cell adhesion by 63–68%. Immunoprecipitation of detergent extracts of 125I-surface-labeled melanoma cells using either anti-human platelet GPIIb-IIla or anti-human vitronectin receptor antibody revealed the presence of a single heterodimeric complex, suggesting that both antisera recognize the same integrin receptor, GPIIb-IIIa-like antigen. Adhesion of cells to TSP is likely mediated through a region of the TSP molecule containing the arginine-glycine-aspartic (RGD) peptide sequence, since cell attachment to TSP was inhibited 50–66% in the presence of peptides containing RGD. These results strongly suggest that a GPIIb-IIIa-like/vitronectin receptor can serve as a cell binding site for TSP in mediating cell-substratum adhesion.  相似文献   

7.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

8.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

9.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

10.
The RGD sequence is present in many extracellular matrix proteins and intracellular proteins, including caspases. Synthetic RGD peptides may affect adhesion, migration and tumour metastasis, or directly induce apoptosis. Several RGD peptides were synthesised, and their anti-adhesive and cytotoxic properties were analysed in vitro. The most active peptide (poly RGD) was also tested in vivo to assess its modulatory activity on melanoma growth. Synthetic RGD peptides inhibit the adhesion of Ab melanoma cells to fibronectin. Poly RGD significantly inhibits primary tumour growth. There was no observed cytotoxicity of poly RGD towards Ab cells in a medium with 10% serum; however, under the same conditions, the anti-adhesive effect of poly RGD was still visible. Experiments on Jurkat cells indicated a weak cytotoxicity of poly RGD and a significant cytotoxicity of GRGDNP (the reference cytotoxic peptide), retained only under serum-free conditions. The anti-tumour effect of poly RGD observed in the Ab Bomirski melanoma model is probably due to an anti-adhesive mechanism. The proapoptotic activity of RGD peptides is dependent on the absence of serum.  相似文献   

11.
We report that an antibody engineered to express three Arg-Gly-Asp (RGD) repeats in the third complementarity-determining region of the heavy chain (antigenized antibody) efficiently inhibits the lysis of human erythroleukemia K-562 cells by natural killer (NK) cells. Synthetic peptides containing RGD did not inhibit. Inhibition was specific for the (RGD)3-containing loop and required simultaneous occupancy of the Fc receptor (CD16) on effector cells. The antigenized antibody inhibited other forms of cytotoxicity mediated by NK cells but not cytotoxicity mediated by major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL). A three-dimensional model of the engineered antibody loop shows the structure and physicochemical characteristics probably required for the ligand activity. The results indicate that an RGD motif is involved in the productive interaction between NK and target cells. Moreover, they show that peptide expression in the hypervariable loops of an antibody molecule is an efficient procedure for stabilizing oligopeptides within a limited spectrum of tertiary structures. This is a new approach towards imparting ligand properties to antibody molecules and can be used to study the biological function and specificity of short peptide motifs, including those involved in cell adhesion.  相似文献   

12.
Targeted cancer therapy is a challenging area that includes multiple chemical and biological vehicles. Virus-like particles (VLPs) combine safety and efficacy in their roles as potential vaccines and drug delivery vehicles. In this study, we propose a novel drug delivery system based on HCV-LPs engineered with SP94 and RGD peptides mediated by a specific molecular chaperone (Grp78) associated with cancer drug resistance. The PCR primers were designed for engineering two constructs, SP94-EGFP-CORE-HIS and RGD-EGFP-CORE-HIS, by sequential PCR reactions. The two fragments were cloned into pFastBac Dual under the polyhedrin promoter and then used to produce two recombinant baculoviruses (AcSP94 and AcRGD). The VLP’s expression was optimized by recombinant virus infection with different MOIs, ranging from 1 to 20 MOI. Recombinant VLP2 were purified by Ni-NTA and their sizes and shapes were confirmed with TEM. They were incubated with different types of cells prior to examination using the fluorescence microscope to test the binding specificity. The effect of the overexpression of the Grp78 on the binding affinity of the engineered VLPs was tested in HepG2 and HeLa cells. The protocol optimization revealed that MOI 10 produced the highest fluorescence intensities after 72 h for the two recombinant proteins (SP94-core and RGD-core). Moreover, the binding assay tested on different types of mammalian cells (HeLa, HEK-293T, and HepG2 cells) showed green fluorescence on the periphery of all tested cell lines when using the RGD-core protein; while, the SP94-core protein showed green fluorescence only with the liver cancer cells, HepG2 and HuH7. Overexpression of Grp78 in HepG2 and HeLa cells enhanced the binding efficiency of the engineered VLPs. We confirmed that the SP94 peptide can be specifically used to target liver cancer cells, while the RGD peptide is sufficiently functional for most types of cancer cells. The overexpression of the Grp78 improved the binding capacity of both SP94 and RGD peptides. It is worth noting that the SP94 peptide can function properly as a recombinant peptide, and not only as a chemically conjugated peptide, as heretofore commonly used.  相似文献   

13.
The coupling between the quaternary structure, stability and function of streptavidin makes it difficult to engineer a stable, high affinity monomer for biotechnology applications. For example, the binding pocket of streptavidin tetramer is comprised of residues from multiple subunits, which cannot be replicated in a single domain protein. However, rhizavidin from Rhizobium etli was recently shown to bind biotin with high affinity as a dimer without the hydrophobic tryptophan lid donated by an adjacent subunit. In particular, the binding site of rhizavidin uses residues from a single subunit to interact with bound biotin. We therefore postulated that replacing the binding site residues of streptavidin monomer with corresponding rhizavidin residues would lead to the design of a high affinity monomer useful for biotechnology applications. Here, we report the construction and characterization of a structural monomer, mSA, which combines the streptavidin and rhizavidin sequences to achieve optimized biophysical properties. First, the biotin affinity of mSA (Kd = 2.8 nM) is the highest among nontetrameric streptavidin, allowing sensitive monovalent detection of biotinylated ligands. The monomer also has significantly higher stability (Tm = 59.8°C) and solubility than all other previously engineered monomers to ensure the molecule remains folded and functional during its application. Using fluorescence correlation spectroscopy, we show that mSA binds biotinylated targets as a monomer. We also show that the molecule can be used as a genetic tag to introduce biotin binding capability to a heterologous protein. For example, recombinantly fusing the monomer to a cell surface receptor allows direct labeling and imaging of transfected cells using biotinylated fluorophores. A stable and functional streptavidin monomer, such as mSA, should be a useful reagent for designing novel detection systems based on monovalent biotin interaction. Biotechnol. Bioeng. 2013; 110: 57–67. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
A monovalent streptavidin with a single femtomolar biotin binding site   总被引:1,自引:0,他引:1  
Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10(4)-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.  相似文献   

15.
The platelet and extracellular matrix glycoprotein thrombospondin interacts with various types of cells as both a positive and negative modulator of cell adhesion, motility, and proliferation. These effects may be mediated by binding of thrombospondin to cell surface receptors or indirectly by binding to other extracellular matrix components. The role of peptide sequences from the type I repeats of thrombospondin in its interaction with fibronectin were investigated. Fibronectin bound specifically to the peptide Gly-Gly-Trp-Ser-His-Trp from the second type I repeat of thrombospondin but not to the corresponding peptides from the first or third repeats or flanking sequences from the second repeat. The two Trp residues and the His residue were essential for binding, and the two Gly residues enhanced the affinity of binding. Binding of the peptide and intact thrombospondin to fibronectin were inhibited by the gelatin-binding domain of fibronectin. The peptide specifically inhibited binding of fibronectin to gelatin or type I collagen and inhibited fibronectin-mediated adhesion of breast carcinoma and melanoma cells to gelatin or type I collagen substrates but not direct adhesion of the cells to fibronectin, which was inhibited by the peptide Gly-Arg-Gly-Asp-Ser. Thus, the fibronectin- binding thrombospondin peptide Gly-Gly-Trp-Ser-His-Trp is a selective inhibitor of fibronectin-mediated interactions of cells with collagen in the extracellular matrix.  相似文献   

16.
The formation of a suitable extracellular matrix (ECM) that promotes cell adhesion, organization, and proliferation is essential within biomaterial scaffolds for tissue engineering applications. In this work, short elastin mimetic peptide sequences, EM-19 and EM-23, were engineered to mimic the active motifs of human elastin in hopes that they can stimulate ECM development in synthetic polymer scaffolds. Each peptide was incubated with human aortic smooth muscle cells (SMCs) and elastin and desmosine production were quantified after 48 h. EM-19 inhibited elastin production through competitive binding phenomena with the elastin binding protein (EBP), whereas EM-23, which contains an RGDS domain, induces recovery of elastin production at higher concentrations, alluding to a higher binding affinity for the integrins than for the EBP and the involvement of integrins in elastin production. Colocalization of each peptide with the elastin matrix was confirmed using immunofluorescent techniques. Our data suggest that with appropriate cell-binding motifs, we can simulate the cross-linking of tropoelastin into the developing elastin matrix using short peptide sequences. The potential for increased cell adhesion and the incorporation of elastin chains into tissue engineering scaffolds make these peptides attractive bioactive moieties that can easily be incorporated into synthetic biomaterials to induce ECM formation.  相似文献   

17.
Three-dimensional neurite outgrowth rates within fibrin matrices that contained variable amounts of RGD peptides were shown to depend on adhesion site density and affinity. Bi-domain peptides with a factor XIIIa substrate in one domain and a RGD sequence in the other domain were covalently incorporated into fibrin gels during coagulation through the action of the transglutaminase factor XIIIa, and the RGD-dependent effect on neurite outgrowth was quantified, employing chick dorsal root ganglia cultured two- and three-dimensionally within the modified fibrin. Two separate bi-domain peptides were synthesized, one with a lower binding affinity linear RGD domain and another with a higher binding affinity cyclic RGD domain. Both peptides were cross-linked into fibrin gels at concentrations up to 8.2 mol of peptide/mol of fibrinogen, and their effect on neurite outgrowth was measured. Both two- and three-dimensional neurite outgrowth demonstrated a bi-phasic dependence on RGD concentration for both the linear and cyclic peptide, with intermediate adhesion site densities yielding maximal neurite extension and higher densities inhibiting outgrowth. The adhesion site density that yielded maximal outgrowth depended strongly on adhesion site affinity in both two and three dimensions, with lower densities of the higher affinity ligand being required (0.8-1.7 mol/mol for the linear peptide versus 0.2 mol/mol for the cyclic peptide yielding maximum neurite outgrowth rates in three-dimensional cultures).  相似文献   

18.
Hydrogels with integrin binding activity were created from associating proteins with embedded RGD sequences. These proteins are a modified AC(10)Bcys triblock design composed of acidic A and basic B leucine zipper associating domains flanking a new soluble disordered coil block that contains nine repeats of AGAGAGPEG and three copies of the RGD integrin binding sequence. As with the original AC(10)Bcys design without the embedded RGD sequences, these proteins self-assemble into stable hydrogels at concentrations above approximately 50 mg/mL in a range of solution pH and temperature conditions. The mechanism for hydrogel assembly is the intermolecular association of A and B helical domains into bundles which act as cross-links connected by the soluble central disordered coil domains. The secondary structure of the proteins and the mechanical properties of the hydrogels they form are not adversely affected by the presence of the RGD sequences. The RGD sequences embedded in the disordered coil region support the adhesion, spreading, and polarization of human fibroblast cells on protein coated surfaces. Confocal microscopy studies demonstrated the presence of focal adhesion complexes and organized actin stress fibers in these cells. In contrast, fibroblasts seeded onto surfaces coated with the original AC(10)Bcys protein remained rounded and did not form focal adhesions, indicating that bioactivity is conferred by the presence of the embedded RGD sequences. Such hydrogel-forming bioactive proteins have potential for cell and tissue culture applications.  相似文献   

19.
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.  相似文献   

20.
《The Journal of cell biology》1995,130(5):1189-1196
Many integrins recognize short RGD-containing amino acid sequences and such peptide sequences can be identified from phage libraries by panning with an integrin. Here, in a reverse strategy, we have used such libraries to isolate minimal receptor sequences that bind to fibronectin and RGD-containing fibronectin fragments in affinity panning. A predominant cyclic motif, *CWDDG/LWLC*, was obtained (the asterisks denote a potential disulfide bond). Studies using the purified phage and the corresponding synthetic cyclic peptides showed that *CWDDGWLC*-expressing phage binds specifically to fibronectin and to fibronectin fragments containing the RGD sequence. The binding did not require divalent cations and was inhibited by both RGD and *CWDDGWLC*-containing synthetic peptides. Conversely, RGD-expressing phage attached specifically to immobilized *CWDDGWLC*-peptide and the binding could be blocked by the respective synthetic peptides in solution. Moreover, fibronectin bound to a *CWDDGWLC*-peptide affinity column, and could be eluted with an RGD-containing peptide. The *CWDDGWLC*-peptide inhibited RGD-dependent cell attachment to fibronectin and vitronectin, but not to collagen. A region of the beta subunit of RGD-binding integrins that has been previously demonstrated to be involved in ligand binding includes a polypeptide stretch, KDDLW (in beta 3) similar to WDDG/LWL. Synthetic peptides corresponding to this region in beta 3 were found to bind RGD-displaying phage and conversion of its two aspartic residues into alanines greatly reduced the RGD binding. Polyclonal antibodies raised against the *CWDDGWLC*- peptide recognized beta 1 and beta 3 in immunoblots. These data indicate that the *CWDDGWLC*-peptide is a functional mimic of ligand binding sites of RGD-directed integrins, and that the structurally similar site in the integrin beta subunit is a binding site for RGD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号