首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Myxococcus xanthus is a gram-negative soil bacterium that initiates a complex developmental program in response to starvation. A transposon insertion (Tn5-lac omega109) mutant with developmental deficiencies was isolated and characterized in this study. A strain containing this insertion mutation in an otherwise wild-type background showed delayed developmental aggregation for about 12 h and sporulated at 1-2% of the wild-type level. Tn5-lac omega109 was found to have disrupted the M. xanthus wbgB gene, which is located 2.1 kb downstream of the M. xanthus lipopolysacharide (LPS) O-antigen biosynthesis genes wzm wzt wbgA. The deduced polypeptide sequence of WbgB shares significant similarity with bacterial glycosyltransferases including M. xanthus WbgA. The wbgB::Tn5-lac omega109 mutant was found to be defective in LPS O-antigen synthesis by immunochemical analysis. Further mutational analysis indicated that the defects of the wbgB::Tn5-lac omega109 mutant were not the result of polar effects on downstream genes. Various motility assays demonstrated that the Tn5-lac omega109 mutation affected both social (S) and adventurous (A) gliding motility of M. xanthus cells. The pleiotrophic effects of wbgB mutations indicate the importance of LPS O-antigen biosynthesis for various cellular functions in M. xanthus.  相似文献   

4.
5.
6.
A previous study reported that the Tn5-induced poly(3-hydroxybutyric acid) (PHB)-leaky mutant Ralstonia eutropha H1482 showed a reduced PHB synthesis rate and significantly lower dihydrolipoamide dehydrogenase (DHLDH) activity than the wild-type R. eutropha H16 but similar growth behavior. Insertion of Tn5 was localized in the pdhL gene encoding the DHLDH (E3 component) of the pyruvate dehydrogenase complex (PDHC). Taking advantage of the available genome sequence of R. eutropha H16, observations were verified and further detailed analyses and experiments were done. In silico genome analysis revealed that R. eutropha possesses all five known types of 2-oxoacid multienzyme complexes and five DHLDH-coding genes. Of these DHLDHs, only PdhL harbors an amino-terminal lipoyl domain. Furthermore, insertion of Tn5 in pdhL of mutant H1482 disrupted the carboxy-terminal dimerization domain, thereby causing synthesis of a truncated PdhL lacking this essential region, obviously leading to an inactive enzyme. The defined ΔpdhL deletion mutant of R. eutropha exhibited the same phenotype as the Tn5 mutant H1482; this excludes polar effects as the cause of the phenotype of the Tn5 mutant H1482. However, insertion of Tn5 or deletion of pdhL decreases DHLDH activity, probably negatively affecting PDHC activity, causing the mutant phenotype. Moreover, complementation experiments showed that different plasmid-encoded E3 components of R. eutropha H16 or of other bacteria, like Burkholderia cepacia, were able to restore the wild-type phenotype at least partially. Interestingly, the E3 component of B. cepacia possesses an amino-terminal lipoyl domain, like the wild-type H16. A comparison of the proteomes of the wild-type H16 and of the mutant H1482 revealed striking differences and allowed us to reconstruct at least partially the impressive adaptations of R. eutropha H1482 to the loss of PdhL on the cellular level.  相似文献   

7.
8.
9.
10.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

11.
The phytopathogenic fungus Fusarium oxysporum is a model organism in the study of plant-fungus interactions. As other Fusarium species, illuminated cultures of F. oxysporum exhibit an orange pigmentation because of the synthesis of carotenoids, and its genome contains orthologous light-regulated car genes for this biosynthetic pathway. By chemical mutagenesis, we obtained carotenoid overproducing mutants of F. oxysporum, called carS, with upregulated mRNA levels of the car genes. To identify the regulatory gene responsible for this phenotype, a collection of T-DNA insertional mutants obtained by Agrobacterium mediated transformation was screened for carotenoid overproduction. Three candidate transformants exhibited a carS-like phenotype, and two of them contained T-DNA insertions in the same genomic region. The insertions did not affect the integrity of any annotated ORFs, but were linked to a gene coding for a putative RING-finger (RF) protein. Based on its similarity to the RF protein CrgA from the zygomycete Mucor circinelloides, whose mutation results in a similar carotenoid deregulation, this gene (FOXG_09307) was investigated in detail. Its expression was not affected in the transformants, but mutant alleles were found in several carS mutants. A strain carrying a partial FOXG_09307 deletion, fortuitously generated in a targeted transformation experiment, exhibited the carS phenotype. This mutant and a T-DNA insertional mutant holding a 5-bp insertion in FOXG_09307 were complemented with the wild type FOXG_09307 allele. We conclude that this gene is carS, encoding a RF protein involved in down-regulation of F. oxysporum carotenogenesis.  相似文献   

12.
We have cloned a 13 kb Escherichia coli DNA fragment which complemented the rfe mutation to recover the biosynthesis of E. coli O9 polysaccharide. Using Tn5 insertion inactivation, the rfe gene was localized at the 1.5 kb HindIII-EcoRI region flanking the rho gene. We constructed an rfe-deficient E. coli K-12 mutant by site-directed inactivation using a DNA fragment of the cloned 1.5 kb rfe gene. This also confirmed the presence of the rfe gene in the 1.5 kb region. By simultaneous introduction of both the rfe plasmid and the plasmid of our previously cloned E. coli O9 rfb into this rfe mutant, we succeeded in achieving in vivo reconstitution of O9 polysaccharide biosynthesis. From sequence analysis of the rfe gene, a putative promoter followed by an open reading frame (ORF) was identified downstream of the rho gene. This ORF coincided with the position of the rfe gene determined by Tn5 analysis and site-directed mutagenesis. Furthermore, we identified the rff genes in the 10.5 kb DNA flanking the rfe gene. We recognized at least two functional domains on this cloned rff region. Region I complemented a newly found K-12 rff mutant, A238, to synthesize the enterobacterial common antigen (ECA). Deletion of region II resulted in the synthesis of ECAs with shorter sugar chains. When the 10.5 kb rff genes of the plasmid were inactivated by either deletion or Tn5 insertion, the plasmid lost its ability to give rise to transformants of the rfe mutants.  相似文献   

13.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

14.
15.
16.
The carotenoid biosynthesis genes form a cluster within the genome of Rhodobacter sphaeroides, lying in the middle of a larger cluster and 45 kb in length, which contains genes for bacteriochlorophyll biosynthesis and for the reaction center and light-harvesting apoproteins. The positions and approximate limits of the carotenoid genes were determined previously by localized transposon Tn5 mutagenesis and by comparison with the closely related Rhodobacter capsulatus carotenoid gene cluster. In this report, analysis of the DNA and deduced amino acid sequences of the carotenoid genes in R. sphaeroides are presented. Twenty-five Tn5 insertion mutants were used to produce a base-specific Tn5 insertion map of this region, and carotenoid gene assignment was supported by spectroscopic, ultrastructural, and high-pressure liquid chromatography analyses of these mutants. A region in the 3' end of crtD which affects bacteriochlorophyll biosynthesis was discovered, and CrtA was found to possess a proline-rich C-terminal region containing a repeated (Ala-Pro)n motif. CrtF also showed a high degree of sequence conservation with eukaryotic O-methyltransferases. This study provides gene sequences and assignments based upon a comprehensive structural, spectroscopic, and biochemical analysis of a range of carotenoid biosynthetic mutants; in each mutation, the point of Tn5 insertion is determined accurate to 1 bp on the gene cluster.  相似文献   

17.
Fusions of the lac genes to the promoters of four structural genes in the methionine biosynthetic pathway, metA, metB, metE, and metF, were obtained by the use of the Mu d(Ap lac) bacteriophage. The levels of beta-galactosidase in these strains could be derepressed by growth under methionine-limiting conditions. Furthermore, growth in the presence of vitamin B12 repressed the synthesis of beta-galactosidase in strains containing a fusion of lacZ to the metE promoter, phi(metE'-lacZ+). Mutations affecting the regulation of met-lac fusions were generated by the insertion of Tn5. Tn5 insertions were obtained at the known regulatory loci metJ and metK. Interestingly, a significant amount of methionine adenosyltransferase activity remained in the metK mutant despite the fact that the mutation was generated by an insertion. Several Tn5-induced regulatory mutations were isolated by screening for high-level beta-galactosidase expression in a phi(metE'-lacZ+) strain in the presence of vitamin B12. Tn5 insertions mapping at the btuB (B12 uptake), metH (B12 dependent tetrahydropteroylglutamate methyltransferase), and metF (5,10-methylenetetrahydrofolate reductase) loci were obtained. The isolation of the metH mutant was consistent with previous suggestions that the metH gene product is required for the repression of metE by vitamin B12. The metF::Tn5 insertion was of particular interest since it suggested that a functional metf gene product was also needed for repression of metE by vitamin B12.  相似文献   

18.
We describe a Tn551 chromosomal insertion in Staphylococcus aureus S6C that results in sharply reduced expression of extracellular lipase. With Tn917 as a probe, the insertion in the original mutant (KSI905) was localized to a 12.6-kb EcoRI DNA fragment. The 12.6-kb fragment was cloned and used as a probe to identify a 26-kb EcoRI fragment containing the Tn551 insertion site in the S6C parent strain. Restriction endonuclease analysis of the 12.6- and 26-kb EcoRI fragments confirmed that the Tn551 insertion in KSI905 was accompanied by a deletion of 18.7 kb of chromosomal DNA. Tn551 was transduced from KSI905 back into the S6C parent strain. All transductants exhibited the same lipase-negative (Lip-) phenotype and contained the same mutation with respect to both the insertion and the 18.7-kb deletion. The inability to produce lipase was not caused by disruption of the lipase structural gene, since all Lip- mutants carried intact copies of geh. Moreover, the Tn551 insertion was localized to a region of the staphylococcal chromosome at least 650 kb from geh. Taken together, these results suggest that the Tn551 insertion occurred in a region of the chromosome encoding a trans-active element required for the expression of extracellular lipase. A 20-bp oligonucleotide corresponding to a sequence within the region encoding RNA II near the Tn551 insertion site in ISP546 (H.L. Peng, R.P. Novick, B. Kreiswirth, J. Kornblum, and P. Schlievert, J. Bacteriol. 170:4365-4372, 1988) and a 1.75-kb DNA fragment representing the region encoding RNA III were used as gene probes to show that the Tn551 insertion did not occur in the agr locus. We conclude that the genetic element functions independently of agr or as an unrecognized part of that regulatory system.  相似文献   

19.
用转座子Tn5gusA5对野油菜黄单胞菌野油菜致病变种(Xanthomonas campestris pv.campestris,简称Xcc)野生型菌株8004进行诱变,分离到一批胞外多糖(EPS)合成减少的突变体。采用TAIL-PCR(thermal asymmetric interlaced PCR)分析突变体的Tn5gusA5插入位点,发现其中一株编号为151D09的突变体的插入位点位于Xcc 8004菌株的基因组编号为XC3695的ORF内,该ORF功能尚未见报道。序列分析表明,该ORF演绎的编码产物与Serratia marcescens的kdtX基因和Klebsiella pneumoniaewaaE基因演绎的编码产物分别具有52%和50%的相似性,并具有第2家族糖基转移酶的功能域, 因此暂将该ORF命名为waxE基因。用同源双交换方法构建了waxE基因的缺失突变体,并采用PCR和Southern杂交的方法对突变体进行了验证。waxE基因缺失突变体在营养丰富培养基的生长繁殖不受影响,但其EPS产量与野生型菌株8004相比,降低35%左右,并且一段PCR合成的包含waxE基因的DNA片段能反式互补waxE基因缺失突变体,恢复缺失突变体的EPS产量,表明Xcc waxE基因与EPS的生物合成有关。  相似文献   

20.
Agrobacterium rhizogenes mutants that fail to bind to plant cells.   总被引:3,自引:1,他引:2       下载免费PDF全文
Transposon insertion mutants of Agrobacterium rhizogenes were screened to obtain mutant bacteria that failed to bind to carrot suspension culture cells. A light microscope binding assay was used. The bacterial isolates that were reduced in binding to carrot cells were all avirulent on Bryophyllum diagremontiana leaves and on carrot root disks. The mutants did not appear to be altered in cellulose production. The composition of the medium affected the ability of the parent and mutant bacteria to bind to carrot cells. The parent strain bound to carrot cells in greatest numbers in low-ionic-strength media such as 4% sucrose but still showed significant binding in Murashige-Skoog tissue culture medium. All of the mutants showed reduced binding in 4% sucrose after 2 h of incubation with carrot cells. One mutant was delayed in binding in 4% sucrose. This mutant and one other mutant also showed reduced binding to carrot cells in Murashige-Skoog medium. To determine whether the Tn5 insertion was responsible for the mutant phenotype, DNA containing the Tn5 insertion was cloned from the mutant bacteria and used to introduce Tn5 into the parent strain in the same location as in the original mutant by marker exchange. The resulting transconjugants had the same avirulent, nonattaching phenotype as the original mutants, suggesting that the mutant phenotype was due to the Tn5 insertion. The cloned DNA containing the Tn5 insertion was also tested for homology to DNA of known genes that affect attachment of Agrobacterium tumefaciens to plant cells by DNA hybridization. No homology to chv, att, or pscA clones was observed. In addition, cloned chv, att, and pscA genes from A. tumefaciens were unable to complement the attachment-minus A. rhizogenes mutants. Thus, the A. rhizogenes nonattaching mutants appear to be different from the previously described A. tumefaciens mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号