首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

2.
3.
4.
1,25-二羟基维生素D_3是人们熟悉的调节钙磷代谢的重要激素,它可抑制淋巴细胞增殖和抗体生成,诱导巨噬细胞的分化及细胞表面主要组织相容性抗原的表达,是一种新的免疫调节激素。  相似文献   

5.
6.
Incubation of HTC rat hepatoma cells with the synthetic glucocorticoid dexamethasone rapidly inhibits plasminogen activator (PA) activity and reveals the presence of a specific PA inhibitor (PAI-1). To determine whether the hormonal inhibition of PA activity reflects a decrease in the amount of PA or an increased amount of the inhibitor, or both, we have assayed PA and PAI-1 immunologically. HTC PA was determined to be entirely of the tissue type (tPA), and both free and complexed antigen was quantified by a RIA using rabbit antirat tPA, with rat insulinoma tPA as tracer and standard. PAI-1 was quantified by a Western blot assay using rabbit anti-HTC PAI-1 antibody and purified HTC PAI-1 as standard. Under conditions in which dexamethasone inhibited PA activity by 90%, there was no decrease in the cellular content of tPA antigen. Paradoxically, dexamethasone increased tPA antigen approximately 1.5-fold. Under these same conditions, dexamethasone increased PAI-1 antigen 4- to 5-fold. We conclude that the glucocorticoid inhibition of tPA activity in HTC cells is not secondary to a decrease in the amount of tPA but is secondary to the induction of a specific PA inhibitor.  相似文献   

7.
1,25-Dihydroxyvitamin D3 and the immune system   总被引:1,自引:0,他引:1  
There is substantial evidence that lymphocytes and monocytes are targets for the actions of the hormonal form of vitamin D, 1,25-(OH)2D3 and that 1,25-(OH)2D3 acts to modulate the proliferation, differentiation, and immune functions of these cells. The effects of the hormone on lymphocytes are mediated directly as well as indirectly via the accessory monocytes. Depending upon the presence or absence of monocytes and the mode of lymphocyte activation, 1,25-(OH)2D3 can either stimulate or suppress lymphocytes. This evidence as well as clinical information and in vivo studies support a role of 1,25-(OH)2D3 in immunobiology. The physiologic, pathophysiologic, and pharmacologic implications of the immunomodulating properties of 1,25-(OH)2D3 however have not been well established.  相似文献   

8.
9.
10.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

11.
A marked induction of 125I-calmodulin binding proteins (185kDa and 115kDa) occurred in the rat kidney in response to treatment with 1,25-dihydroxyvitamin D3 (100 ng/day s.c. x 7d). These 125I-calmodulin binding proteins, measured by the gel overlay procedure, exhibited calcium dependence and were abolished in the presence of excess unlabelled calmodulin. The response was tissue specific: there was no change in 125I-calmodulin binding in rat testis, heart, and brain and only a modest elevation of binding to one calmodulin binding protein in the intestinal mucosa. These results are particularly important in suggesting that the calmodulin signal transduction mechanism may, via changes in its acceptor proteins, participate in mediating some biological effects of 1,25-dihydroxyvitamin D3.  相似文献   

12.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

13.
14.
The kinetics of inhibition of tissue-type plasminogen activator (t-PA) by the fast-acting plasminogen activator inhibitor-1 (PAI-1) was investigated in homogeneous (plasma) and heterogeneous (solid-phase fibrin) systems by using radioisotopic and spectrophotometric analysis. It is demonstrated that fibrin-bound t-PA is protected from inhibition by PAI-1, whereas t-PA in soluble phase is rapidly inhibited (K1 = 10(7) M-1.s-1) even in the presence of 2 microM-plasminogen. The inhibitor interferes with the binding of t-PA to fibrin in a competitive manner. As a consequence the Kd of t-PA for fibrin (1.2 +/- 0.4 nM) increases and the maximal velocity of plasminogen activation by fibrin-bound t-PA is not modified. From the plot of the apparent Kd versus the concentration of PAI-1 a Ki value of 1.3 +/- 0.3 nM was calculated. The quasi-similar values for the dissociation constants between fibrin and t-PA (Kd) and between PAI-1 and t-PA (Ki), as well as the competitive type of inhibition observed, indicate that the fibrinolytic activity of human plasma may be the result of an equilibrium distribution of t-PA between both the amount of fibrin generated and the concentration of circulating inhibitor.  相似文献   

15.
16.
1,25-Dihydroxyvitamin D3 suppresses the growth of multiple human cancer cell lines by inhibiting cell cycle progression and inducing cell death. The present study showed that 1,25-dihydroxyvitamin D3 causes cell cycle arrest at the G2/M transition through p53-independent induction of GADD45 in ovarian cancer cells. Detailed analyses have established GADD45 as a primary target gene for 1,25-dihydroxyvitamin D3. A DR3-type vitamin D response element was identified in the fourth exon of GADD45 that forms a complex with the vitamin D receptor.retinoid X receptor heterodimer in electrophoresis mobility shift assays and mediates the dose-dependent induction of luciferase activity by 1,25-dihydroxyvitamin D3 in reporter assays. Chromatin immunoprecipitation assays have shown that the vitamin D receptor is recruited in a ligand-dependent manner to the exonic enhancer but not to the GADD45 promoter regions. In ovarian cancer cells expressing GADD45 antisense cDNA or GADD45-null mouse embryo fibroblasts, 1,25-dihydroxyvitamin D3 failed to induce G2/M arrest. Taken together, these results identify GADD45 as an important mediator for the tumor-suppressing activity of 1,25-dihydroxyvitamin D3 in human ovarian cancer cells.  相似文献   

17.
1,25-Dihydroxyvitamin D3 intestinal receptor replenishment was examined in rachitic chickens after hormone administration. A single injection of 1,25-dihydroxyvitamin D3 caused an increase in the level of occupied receptors with a concomitant decrease in the amount of unoccupied receptors. Maximum occupancy occurred 1 h after hormone injection. The metabolic inhibitor of protein synthesis, cycloheximide, was employed to obtain additional information concerning the fate of 1,25-dihydroxyvitamin D3 receptor complexes. Cycloheximide, at a dose that effectively blocked protein synthesis, had no effect on the time-course or the magnitude of replenishment of nuclear receptors. Additionally, repletion with vitamin D3 or administration of several injections of 1,25-dihydroxyvitamin D3 did not lead to a lag in replenishment time or a significant decrease in total receptor levels. These findings demonstrate that recycling of receptors plays an important functional role for the replenishment of unoccupied 1,25-dihydroxyvitamin D3 intestinal receptors.  相似文献   

18.
19.
20.
Plasminogen activators (PA) convert the inactive proenzyme plasminogen into plasmin, which is involved in the process of fibrinolysis, tissue remodeling, and cell migration. There are two distinct forms of PA: urokinase (u-PA) and tissue-type plasminogen activator (t-PA). t-PA has higher affinity for fibrin and is the main form involved in thrombolysis. By in situ chromosomal hybridization and Southern blot analysis of somatic cell hybrid DNA, we have assigned the human t-PA gene to chromosome 8, bands 8p12----q11.2. We have detected a common EcoRI restriction fragment length polymorphism within the t-PA gene that thus provides a precisely localized highly informative marker for genetic linkage studies. The t-PA gene localization coincides with a translocation breakpoint observed in myeloproliferative disorders. Whereas leukemic cells usually secrete both types of PA, a correlation exists between acute myeloid leukemic cells that release only t-PA and failure to respond to chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号