首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model relating the recruitment of skeletal muscle fibers from precursor cells to growth and development of the whole muscle is presented. The pattern of growth throughout ontogeny is analyzed for differences in: (1) initial number of precursor cells, (2) timing of onset of differentiation, (3) timing of offset of differentiation, and (4) differentiation rate (number of precursor cells that differentiate each cell cycle). The initial number results in a larger muscle but has no effect on relative growth rate. Later onset time and slower differentiation rate result in relatively slow growth early in ontogeny but rapid growth for most of ontogeny. A later offset time results in faster growth late in ontogeny as new fibers continue to be recruited late into ontogeny. The pattern derived from onset time and differentiation rate matches that of the precocial-altricial continuum in birds in which selection for functional ability early in ontogeny results in slow growth late in ontogeny. Methods for recognizing the different developmental parameters in the size distribution of muscle fibers are described and three empirical examples interpreted in terms of the model.  相似文献   

2.
Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies.  相似文献   

3.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

4.
During the course of a mild chemical peritonitis, new skeletal muscle fibers develop and persist over a twelve-month interval in the diaphragmatic peritoneum. Light and electron microscopic studies revealed that the ectopic fibers developed from myoblasts and myotubes to fully differentiated muscle cells in the same manner as normally situated skeletal muscle. The ectopic fibers were separated from the intrinsic muscle by dense connective tissue and an elastic lamina. Diaphragms taken from normal rats and transplanted to the omentum of isogeneic recipients also developed skeletal muscle neogenesis in the same ectopic location as in the normal diaphragm. Satellite cells, reactive fibroblasts in the peritoneum, mesenchymal stem cells or blood-borne myoblast precursor cells could be the source of these ectopic muscle fibers. The results of the present studies, however, cannot provide conclusive evidence for the origin of the new muscle fibers. Regardless of their source, the methods employed may represent a unique model for the development and prolonged maintenance of skeletal muscle fibers in a heterotopic location in vivo.  相似文献   

5.
6.
7.
As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is an inherited disease that leads to progressive muscle wasting. Myogenic precursor cell transplantation is an approach that can introduce the normal dystrophin gene in the muscle fibers of the patients. Unfortunately, these myogenic precursor cells do not migrate well in the muscle and thus many injections have to be done to enable a good graft success. Recent reports have shown that there is extensive splicing of the IGF-1 gene in muscles. The MGF isoform contains a C-terminal 24 amino acids peptide in the E domain (MGF-Ct24E) that has intrinsic properties. It can promote the proliferation while delaying the differentiation of C(2)C(12) cells. Here, we demonstrated that this synthetic peptide is a motogenic factor for human precursor myogenic cells in vitro and in vivo. Indeed, MGF-Ct24E peptide can modulate members of the fibrinolytic and metalloproteinase systems, which are implicated in the migration of myogenic cells. MGF-Ct24E peptide enhances the expression of u-PA, u-PAR and MMP-7 while reducing PAI-1 activity. Moreover, it has no effect on the gelatinases MMP-2 and -9. Those combined effects can favour cell migration. Finally, we present some results suggesting that the MGF-Ct24E peptide induces these cell responses through a mechanism that does not involve the IGF-1 receptor. Thus, this MGF-Ct24E peptide has a new pro-migratory activity on human myogenic precursor cells that may be helpful in the treatment of DMD. Those results reinforce the possibility that the IGF-1Ec isoform may produce an E domain peptide that can act as a cytokine.  相似文献   

9.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in notochord or muscle of Ciona embryos as a means of interfering with development of these tissues. Ciona embryos expressing bix in the notochord from the 64-cell stage develop into larvae with very short tails, in which the notochord precursors fail to intercalate and differentiate. Larvae with mosaic expression of bix have intermediate phenotypes, in which a partial notochord is formed by the precursor cells that did not receive the transgene while the precursors that express the transgene cluster together and fail to undergo any of the cell-shape changes associated with notochord differentiation. Muscle cells adjacent to differentiated notochord cells are properly patterned, while those next to the notochord precursor cells transformed by bix exhibit various patterning defects. In these embryos, the neural tube extends in the tail to form a nerve cord, while the endodermal strand fails to enter the tail region. Similarly, expression of bix in muscle progenitors impairs differentiation of muscle cells, and as a result, notochord cells fail to undergo normal extension movements. Hence, these larvae have a shorter tail, due to a block in the elongation of the notochord. Taken together, these observations suggest that tail formation in ascidian larvae requires not only signaling from notochord to muscle cells, but also a "retrograde" signal from muscle cells to notochord.  相似文献   

10.
Both the muscle and endothelium of the vertebrate limb derive from somites. We have used replication-defective retroviral vectors to analyze the lineage relationships of these somite-derived cells in the chick. We find that myogenic precursors in the somites or proximal limb are not committed to forming slow or fast muscle fibers, particular anatomical muscles, or muscles within specific proximal/distal or dorsal/ventral limb regions. Somitic endothelial precursors are uncommitted to forming endothelium in particular proximal/distal or dorsal/ventral limb regions. Surprisingly, we also find that myogenic and endothelial cells are derived from a common somitic precursor. Thus, local extrinsic signals are critical for determining muscle and endothelial patterning as well as cell fate in the limb.  相似文献   

11.
Tendons and ligaments are often affected by mechanical injuries or chronic impairment but other than muscle or bone they possess a low healing capacity. So far, little is known about regeneration of tendons and the role of tendon precursor cells in that process. We hypothesize that perivascular cells of tendon capillaries are progenitors for functional tendon cells and are characterized by expression of marker genes and proteins typical for mesenchymal stem cells and functional tendon cells. Immunohistochemical characterization of biopsies derived from intact human supraspinatus tendons was performed. From these biopsies perivascular cells were isolated, cultured, and characterized using RT-PCR and Western blotting. We have shown for the first time that perivascular cells within tendon tissue express both tendon- and stem/precursor cell-like characteristics. These findings were confirmed by results from in vitro studies focusing on cultured perivascular cells isolated from human supraspinatus tendon biopsies. The results suggest that the perivascular niche may be considered a source for tendon precursor cells. This study provides further information about the molecular nature and localization of tendon precursor cells, which is the basis for developing novel strategies towards tendon healing and facilitated regeneration. H. Tempfer and A. Wagner have contributed equally to this paper.  相似文献   

12.
The objective of this study was to determine how long myogenic cells can survive in the central ischemic zone of early free muscle grafts in the rat. The study was conducted on free grafts of a large (rectus femoris) and a small (extensor digitorum longus) muscle. At times ranging from zero hr to five days post-grafting, the central zones were isolated, minced, and implanted under the back skin of mice. After five days the minces were removed and examined histologically for the presence of rat myotubes, which should form only in minces that contain viable myogenic cells. The results show that myogenic cells survive two to four hr in the ischemic centers of the large rectus femoris grafts; after longer post-grafting intervals, rat myotubes did not arise in central zone minces. In grafts of small muscles, myotubes consistently appeared in central zone minces. Since the formerly ischemic central areas of rectus muscle grafts are ultimately replaced by regenerating muscle fibers, we conclude that these regenerating muscle fibers are derived from precursor cells located outside of the ischemic zone.  相似文献   

13.
Skeletal muscle regeneration in adults is thought to occur through the action of myogenic satellite cells located in close association with mature muscle fibers; however, these precursor cells have not been prospectively isolated, and recent studies have suggested that additional muscle progenitors, including cells of bone marrow or hematopoietic origin, may exist. To clarify the origin(s) of adult myogenic cells, we used phenotypic, morphological, and functional criteria to identify and prospectively isolate a subset of myofiber-associated cells capable at the single cell level of generating myogenic colonies at high frequency. Importantly, although muscle-engrafted cells from marrow and/or circulation localized to the same anatomic compartment as myogenic satellite cells and expressed some though not all satellite cell markers, they displayed no intrinsic myogenicity. Together, these studies describe the clonal isolation of functional adult myogenic progenitors and demonstrate that these cells do not arise from hematopoietic or other bone marrow or circulating precursors.  相似文献   

14.
The ability to carry out gene targeting in somatic stem cells while maintaining their stem cell characteristics would have important implications for gene therapy and for the analysis of gene function. Using mouse myoblasts, we have explored this possibility by attempting to alter the promoter of a myosin heavy chain gene (MyHCIIB) characteristic of physiologically "fast" muscle so as to force its unscheduled expression in physiologically "slow" muscle fibers. Conditionally immortalized muscle precursor cells were transfected with a gene targeting construct designed to replace the MyHCIIB promoter with that for the carbonic anhydrase III gene (CAIII), which is highly expressed in slow muscle. A potentially targeted clone was isolated and differentiated in culture to form myotubes which expressed MyHCIIB. Cells from the same clone were injected into both slow and fast muscle of host mice, where they contributed to fiber formation. In slow muscle, the fibers derived from this clone did not express MyHCIIB; this may reflect an instability of the targeted MyHCIIB locus and/or a failure of the hybrid promoter to function in slow fibers in vivo. Nonetheless, we have demonstrated that a "promoter knock-in" gene targeting procedure can be used to generate unique MyHCIIB-expressing myotubes in culture and that conditionally immortalized myoblasts can be subjected to extensive passaging and genetic manipulation without losing their ability to form fibers in culture and in vivo.  相似文献   

15.
DNAase I sensitivity of genes expressed during myogenesis.   总被引:17,自引:5,他引:12       下载免费PDF全文
Y Carmon  H Czosnek  U Nudel  M Shani    D Yaffe 《Nucleic acids research》1982,10(10):3085-3098
Cultures of a rat myogenic cell line were used to examine the question of whether in proliferating precursor cells genes which are programmed to be expressed later in development, in the same cell lineage, differ in DNAase I sensitivity from genes which are never expressed in these cells. Nuclei isolated from proliferating mononucleated myoblasts, differentiated cultures containing multinucleaged fibers, and rat brain, were treated with DNAase I. The sensitivity of the genes coding for the muscle-specific alpha-actin, myosin light chain 2 and the nonmuscle beta-actin was measured by blot hybridization of nuclear DNA with the corresponding cloned cDNA and genomic DNA probes. The sensitivity of these genes was compared to that of a gene not expressed in the muscle tissue. The results showed that in the muscle precursor cells, the potentiality of tissue-specific genes to be expressed is not reflected in DNAase I sensitivity. The changes which render these genes preferentially sensitive to DNAase I take place during the transition to terminal differentiation. The results showed also that the region of DNAase I sensitivity of the alpha-actin gene in the differentiated cells ends between 40 to 700 bp 5' to the structural gene. No DNAase I hypersensitive site was detected 5' to the alpha-actin gene.  相似文献   

16.
We characterize a newly discovered morphological difference between species of the Drosophila melanogaster subgroup. The muscle of Lawrence (MOL) contains about four to five fibers in D. melanogaster and Drosophila simulans and six to seven fibers in Drosophila mauritiana and Drosophila sechellia. The same number of nuclei per fiber is present in these species but their total number of MOL nuclei differs. This suggests that the number of muscle precursor cells has changed during evolution. Our comparison of MOL development indicates that the species difference appears during metamorphosis. We mapped the quantitative trait loci responsible for the change in muscle fiber number between D. sechellia and D. simulans to two genomic regions on chromosome 2. Our data eliminate the possibility of evolving mutations in the fruitless gene and suggest that a change in the twist might be partly responsible for this evolutionary change.  相似文献   

17.
18.
Transplantation of muscle precursor cells (mpc) has been suggested as a treatment for myopathies, such as Duchenne muscular dystrophy. Irradiation of skeletal muscle with 16-20 Gy prevents muscle regeneration and also augments muscle formation from implanted muscle precursor cells (mpc). However, when mdx nu/nu mouse muscles are preirradiated at 0.73 Gy/min rather than at 1.29 Gy/min prior to their injection with normal mpc, significantly more muscle fibres of donor origin are formed. This suggests that the rate at which irradiation is delivered has a physiological effect on the muscle. Although it would not be feasible to irradiate a patient's muscles prior to mpc implantation, once the factor(s) which are altered in irradiated muscle have been identified, it might be possible to use these to increase the success of myoblast transplantation.  相似文献   

19.
The flexor (FlTi) and extensor (ETi) tibiae are antagonist muscles located in the femur of the metathoracic leg of the grasshopper. Both are complex, consisting of an array of bundles of muscle fibers connecting the ectoderm of the wall of the femur with their respective apodemes. In the previous paper (E. E. Ball and C. S. Goodman, 1985, Dev. Biol. 111, 399-416) we described the embryonic development of the ETi muscle, focusing in particular on its syncytial origin from a giant supramuscle pioneer which later divides into an array of individual muscle pioneers. Here we describe the embryonic development of the FlTi muscle. In contrast to the development of the ETi muscle, the array of individual muscle pioneers for the FlTi does not have a syncytial origin but rather arises by sequential recruitment from the mass of smaller, undifferentiated mesoderm cells. The FlTi MPs first appear as two cells symmetrically placed on the corners of the FlTi apodeme at around 37%. A third MP is then added between these two; this third MP later dies. Subsequent growth occurs by symmetrical addition of MPs distally along the sides of the developing apodeme and by enlargement of the individual MPs. Initially each MP contains only a single nucleus; by about 50% there are at least two to three nuclei per MP and each is surrounded by a cluster of smaller, undifferentiated mesoderm cells. Each MP develops into a bundle of muscle fibers by a cycle of fusion and division. The individual mesoderm cells surrounding each MP fuse with it starting at about 60%. At the same time, the large MP begins to divide into smaller muscle fibers.  相似文献   

20.
Sporadic inclusion body myositis (IBM) is the most common age-related muscle disease in humans; however, its etiology is unknown, there are few animal models for this disease, and effective treatments have not been identified. Similarities between pathological findings in Alzheimer's disease brain and IBM skeletal muscle include increased levels of amyloid precursor protein (APP) and amyloid beta-protein (Abeta). Moreover, there have been suggestions that elevated levels of free cholesterol might participate in the pathogenesis of Alzheimer's disease and IBM due, in part, to its role in Abeta generation. Here, we tested the hypothesis that rabbits fed cholesterol-enriched diets might faithfully exhibit human-like IBM pathological features. In skeletal muscle of one-third of the female rabbits fed cholesterol-enriched diet but not control diet, we found features of IBM, including vacuolated muscle fibers, increased numbers of mononuclear inflammatory cells, increased intramuscular deposition of Abeta, hyperphosphorylated tau, and increased numbers of muscle fibers immunopositive for ubiquitin. The cholesterol-enriched diet increased mRNA and protein levels of APP, increased the protein levels of betaAPP cleaving enzyme, and shifted APP processing in favor of Abeta production. Our study has demonstrated that increased ingestion of high levels of dietary cholesterol can result in pathological features that resemble IBM closely and thus may serve as an important new model with which to study this debilitating disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号