首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domain structure of the simian virus 40 core origin of replication.   总被引:52,自引:13,他引:39       下载免费PDF全文
The simian virus 40 core origin of replication consists of nucleotides 5211 through 31. These 64 base pairs contain three functional domains with strict sequence requirements and two spacer regions with relaxed sequence specificity but precise positional constraints. The early domain extends for 10 contiguous base pairs between nucleotides 5211 and 5220. A 9-base pair spacer from sequences 5221 through 5229 separates the early domain from the 23-base pair central palindrome that directs the binding of T antigen. The late end of the core between nucleotides 12 and 31 also contains spacer and sequence-specific functions that are not yet completely mapped. We propose that the sequence-specific domains are interaction sites for viral and cellular proteins, determinants of DNA conformation, or both. The spacers would position these signals at required distances and rotations relative to one another.  相似文献   

2.
Protein-DNA interactions at the simian virus 40 origin of replication   总被引:1,自引:0,他引:1  
Simian Virus 40 (SV40)-encoded large T antigen has an intrinsic ATP-dependent DNA-unwinding activity which is necessary for an early step in the activation of the viral origin of replication. Isolated T antigen unwinds any double-stranded DNA, regardless of whether it is linear or circularly closed. However, initiation of DNA replication depends on an intact origin of replication, and even minor deviations from the wild-type origin sequence abolish the template activity of an origin-bearing plasmid. This discrepancy suggests that T antigen may not be sufficient for origin activation and that other, probably cellular, functions are involved. We have isolated a cellular protein, the LOB protein, which specifically interacts with the AT-rich region of the SV40 origin and which induces a pronounced bending of the bound DNA.  相似文献   

3.
4.
The simian virus 40 origin of replication contains a 27-base-pair palindrome with the sequence 5'-CA-GAGGC-C-GAGGC-G-GCCTC-G-GCCTC-TG-3'. The four 5'-GAGGC-3'/5'-GCCTC-3' pentanucleotides are known contact sites for simian virus 40 T-antigen binding in vitro. We used oligonucleotide-directed cassette mutagenesis to identify features of this palindrome that are important for the initiation of DNA replication in vivo. Each base pair of a pentanucleotide is crucial for DNA replication. In contrast, sequences adjacent to pentanucleotides have little or no effect on replication. Thus, the pentanucleotide is the basic functional unit, not only for T-antigen binding but also for DNA replication. All four pentanucleotides are indispensable in the initiation process. The spacing of pentanucleotides is crucial because duplication of the single base pair between binding sites has a far greater effect on replication than does substitution of the same base pair. Inversion of any pentanucleotide blocks DNA synthesis. Thus, the pentanucleotide is not a functionally symmetrical unit. We propose that each pentanucleotide positions a monomer of T antigen at the proper distance, rotation, and orientation relative to other T-antigen monomers and to other origin domains and that such positioning leads to subsequent events in replication.  相似文献   

5.
Mutation of the simian virus 40 (SV40) origin of replication (ori) has revealed the presence of three critical domains needed for DNA replication. The outer two domains, the AT tract and early palindrome element (EP), colocalize with DNA regions that become structurally altered in the presence of the SV40 large tumor antigen (T antigen) and ATP. Mutations within each domain were examined for their effect on the distortion of ori DNA by T antigen, as assayed by the sensitivity of DNA to KMnO4 oxidation. We have found that mutations in the AT tract that inhibit SV40 DNA replication also inhibit the distortion of the AT tract. Similarly, mutations in the EP inhibited the generation of structural changes in this element by T antigen. Although AT-tract mutations or mutations on the late side of ori affected structural changes only in the AT tract, certain EP mutations or mutations on the early side of ori also inhibited AT-tract distortion. Mutation of the flanking regions did not significantly affect either the affinity of T antigen for ori or the rate of binding to ori. We conclude from these results that the primary function of the flanking ori domains is to undergo structural changes required during the initiation of SV40 DNA replication. Moreover, our results suggest that the efficiency of replication initiation is significantly affected by the degree to which the flanking elements undergo a structural transition.  相似文献   

6.
7.
Protein-induced bending of the simian virus 40 origin of replication   总被引:10,自引:0,他引:10  
A 3.5 S protein, isolated from mammalian nuclei, specifically binds to DNA fragments containing the simian virus 40 (SV40) origin of replication. Two distinct nucleoprotein complexes are formed, a complex with high electrophoretic mobility carrying probably only one protein molecule, and a complex with reduced electrophoretic mobility carrying probably two protein molecules per DNA fragment. Band shift competition as well as methylation interference assays locate the binding site of the protein in the A + T-rich "late" region of the origin between SV40 nucleotides 13 and 35. The late origin binding (LOB) protein and T antigen bind simultaneously to adjacent sites in the origin. Using circularly permuted DNA fragments of identical lengths we show that the LOB protein induces pronounced bending of the origin fragment. The bending center maps at the 5' end of the adenine tract with one bound protein molecule and at the 3' end when two LOB proteins are bound to one origin fragment.  相似文献   

8.
The core origin of simian virus 40 (SV40) DNA replication is composed of a 64-base-pair sequence encompassing T-antigen-binding site II and adjacent sequences on either side. A 7-base-pair sequence to the early side of T-antigen-binding site II which is conserved among the papovavirus genomes SV40, BK, JC, and SA12 was recently shown to be part of a 10-base-pair sequence required for origin activity (S. Deb, A.L. DeLucia, C.-P. Baur, A. Koff, and P. Tegtmeyer, Mol. Cell. Biol. 6:1663-1670, 1986), but its functional role was not defined. In the present report, we have used gel retention assays to identify a monkey cell factor that interacts specifically with double-stranded DNA carrying this sequence and also binds to single-stranded DNA. DNA-protein complexes formed with extracts from primate cells are more abundant and display electrophoretic mobilities distinct from those formed with rodent cell extracts. The binding activity of the factor on mutant templates is correlated with the replication activity of the origin. The results suggest that the monkey cell factor may be involved in SV40 DNA replication.  相似文献   

9.
S Tsui  M E Anderson    P Tegtmeyer 《Journal of virology》1989,63(12):5175-5183
In vivo, topoisomerase I cleavage sites are located predominantly on the strands of simian virus 40 DNA that are the templates for discontinuous synthesis (S.E. Porter and J.J. Champoux, Mol. Cell. Biol. 9:541-550, 1989). This arrangement of sites suggests that topoisomerase I may associate with replication complexes in unique functional orientations at replication forks. We have mapped topoisomerase I cleavage sites in the simian virus 40 origin of replication in vitro under conditions suitable for DNA replication. Numerous sites cluster in the inverted repeat and AT-rich domains at the ends of the core origin and are arranged on the same strands that are cut most frequently in vivo. We propose that cleavage at these sites would allow bidirectional extension of the replication bubble induced by T antigen within the core origin of replication early in the initiation of DNA synthesis. A mutational analysis of the topoisomerase I sites confirms the importance of positions -4 to -1 and +1 in the consensus sequence 5'-A/T-A/G-A/T-T-break-G/A-3'. Surprisingly, more distant nucleotide positions also influence topoisomerase I sites in the inverted repeat and AT-rich domains of the core origin. The effects of distant sequences could be mediated by direct interactions with topoisomerase I or by the conformation of DNA in the core origin.  相似文献   

10.
The simian virus 40 core origin of replication is composed of distinct domains that are bracketed by DNA spacers. We created a matched set of insertion mutations in spacer sites to study the spatial relationships among origin domains. Insertions larger than a single base pair severely inhibit replication regardless of the helical phasing between domains. Replication-defective mutations reduce T-antigen binding and T-antigen-induced KMnO4 modifications of DNA to various extents. Mutations in the early half of the origin reduce T-antigen functions in the entire origin, whereas mutations in the late half reduce functions only in that half. Surprisingly, some mutations that severely inhibit DNA replication reduce T-antigen-induced melting and other structural changes within origin DNA to only a limited extent. In contrast, all replication-defective origin mutations prevent T antigen from extending the primary replication bubble beyond the limits of the core origin of replication. We conclude, therefore, that T-antigen-induced events within the core origin must be spatially coordinated for conversion of T-antigen hexamers bound to the core origin into mobile helicase units.  相似文献   

11.
We inserted a single base pair into the center of a 27-base-pair palindrome within the replication origin of simian virus 40. The mutation did not directly alter the symmetry of the palindrome or the protein-binding sequences within the palindrome. DNA binding studies showed that subunits of the simian virus 40 A protein (T antigen) bound to each of the four recognition pentanucleotides in the origin palindrome but did so with reduced affinity in comparison with wild-type origins. The mutant origin cloned in a plasmid DNA failed to replicate in COS cells. Thus, precise spatial interactions among subunits of A protein are necessary for stable origin binding and are crucial for subsequent steps in the initiation of DNA replication. Furthermore, any possible functional interactions of the simian virus 40 A protein with cellular DNA would require a great fidelity of protein binding arrangements to initiate cellular DNA replication.  相似文献   

12.
The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.  相似文献   

13.
The simian virus 40 origin of replication contains a 20-base-pair adenine-thymine-rich segment with the sequence 5'-TGCATAAATAAAAAAAATTA-3'. The continuous tract of eight adenines is highly conserved among polyomaviruses. We used single-base substitutions to map structural and functional features of this DNA. Mutations in the AAA and AAAAAAAATT sequences significantly reduce DNA replication and thus identify two sequence-specific functional domains or a single domain with two parts. The AAAAAAAATT sequence also determines a DNA conformation that is characteristic of DNA bending. Single-base mutations in this domain change the degree of net bending, presumably by altering the length and location of the bending sequence. Thus, DNA bending in the correct conformation and location may be a structural signal for replication in polyomavirus origins and perhaps in other origins of replication with consecutive runs of adenines. The first five base pairs (TGCAT) of the 20-base-pair segment and the T between the AAA and AAAAAAAATT domains serve a sequence-independent function that may establish proper spacing within the core origin.  相似文献   

14.
We have determined by use of DNA sequencing techniques the exact location of the deletion in d1 892, a viable deletion mutant of Simian virus 40 (SV40) reported to map very near the unique replication origin or SV40. With the help of this localization we have narrowed down the boundaries of the replication origin to 85 nucleotides within the sequence of SV40.  相似文献   

15.
The nucleotide positions at which DNA synthesis initiates in vitro, in the vicinity of the simian virus 40 origin, have been determined. Start sites for DNA synthesis are greatly suppressed over the simian virus 40 core origin. Relatively weak start sites are detected over the 21-bp repeats and T-antigen-binding site I; distal to these regions, stronger start sites are detected. Thus, studies using a model system for eukaryotic DNA replication indicate that DNA synthesis events initiate, in general, outside the core origin.  相似文献   

16.
Previous studies with wild-type simian virus 40 DNA have shown that the sequence 5'-GAGGC-3' directs the binding of A protein (T antigen). The functional origin of replication contains four recognition pentanucleotides each of which is separated by a single base pair and arranged a two pairs of direct repetitions that are inverted relative to each other. Analysis of A protein binding to a series of nonviable mutants progressively deleting these contact sites leads to the following conclusions: (i) stable binding of subunits of A protein to three origin pentanucleotides is not sufficient for the initiation of DNA replication, (ii) the stability of DNA binding depends on interactions between bound protein subunits, and (iii) a single pentanucleotide is sufficient to bind and orient a subunit of A protein.  相似文献   

17.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

18.
The initial step of simian virus 40 (SV40) DNA replication is the binding of the large tumor antigen (T-Ag) to the SV40 core origin. In the presence of Mg(2+) and ATP, T-Ag forms a double-hexamer complex covering the complete core origin. By using electron microscopy and negative staining, we visualized for the first time T-Ag double hexamers bound to the SV40 origin. Image processing of side views of these nucleoprotein complexes revealed bilobed particles 24 nm long and 8 to 12 nm wide, which indicates that the two T-Ag hexamers are oriented head to head. Taking into account all of the biochemical data known on the T-Ag-DNA interactions at the replication origin, we present a model in which the DNA passes through the inner channel of both hexamers. In addition, we describe a previously undetected structural domain of the T-Ag hexamer and thereby amend the previously published dimensions of the T-Ag hexamer. This domain we have determined to be the DNA-binding domain of T-Ag.  相似文献   

19.
20.
The cofactor ATP stimulates the formation of T-antigen double hexamers on the simian virus 40 core origin of replication (I. A. Mastrangelo, P. V. C. Hough, J. S. Wall, M. Dodson, F. B. Dean, and J. Horwitz, Nature [London] 338:658-662, 1989). We report here the pathway for the assembly of hexamers and double hexamers on the core origin. ATP triggers the cooperative assembly of hexamers on the early and late halves of the origin even when they are completely isolated. Hexamer assembly nucleates at T-antigen recognition pentanucleotides in the early half of the origin. In intact origins, assembly of the first hexamer on the early half of the origin cooperatively stimulates the assembly of a second hexamer on the adjacent late half of the origin. Thus, monomer-monomer and hexamer-hexamer interactions of T antigen, allosterically activated by ATP, constitute two distinct types of cooperative interaction with the origin. Finally, we show that the assembly of T-antigen hexamers on isolated half origins leads to the same array of structural changes that T antigen induces in intact origins. We conclude that the origin is divided into complementary halves that each promote the assembly of functional T-antigen hexamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号