首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptive fields of neurons of the rabbit visual cortex selective for stimulus orientation were investigated. These receptive fields were less well differentiated than those of the analogous neurons of the cat visual cortex (large in size and circular in shape). Two mechanisms of selectivity for stimulus orientation were observed: inhibition between on and off zones of the receptive field (sample type) and oriented lateral inhibition within the same zone of the receptive field (complex type). Lateral inhibition within the same zone of the receptive field also took place in unselective neurons; "complex" selective neurons differed from them in the orientation of this inhibition. A combination of both mechanisms was possible in the receptive field of the same neuron. It is suggested that both simple and complex receptive fields are derivatives of unselective receptive fields and that "complex" neurons are not the basis for a higher level of analysis of visual information than in "simple" neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 13–21, January–February, 1978.  相似文献   

2.
The organization of receptive fields of neurons sensitive to orientation of visual stimuli was investigated in the squirrel visual cortex. Neurons with mutually inhibitory on- and off-areas of the receptive field, with partially and completely overlapping excitatory and inhibitory mechanisms, were distinguished. Neurons of the second group are most typical. They exhibit orientation selectivity within the excitatory area of the receptive field because, if the stimulus widens in the zero direction, perpendicular to the preferred direction, lateral inhibition is much stronger than if it widens in the preferred direction. Additional inhibitory areas (outside the excitatory area) potentiate this inhibition and increase selectivity. It is suggested that there is no strict separation of simple (with separate excitatory and inhibitory mechanisms in the receptive field) and complex (with overlapping of these mechanisms) neurons in the squirrel visual cortex.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 540–549, November–December, 1979.  相似文献   

3.
In acute experiments on unanesthetized curarized cats the intensity functions, response thresholds, inhibition thresholds, and differential sensitivity of 96 neurons in the primary visual projection cortex were investigated by extracellular recording of unit activity during central and peripheral stimulation of their receptive fields. In darkness the neurons had wide threshold and above-threshold reliefs (3–30°). The threshold reliefs of the receptive fields of some cells were found to be V-shaped, whereas others were marked by alternation of zones of increased and reduced excitability. Sensitivity of both excitatory and inhibitory inputs of the receptive field as a rule was greatest in the center. Inhibitory inputs of different cortical neurons were much more standard and less sensitive to light, and they were mainly activated within the intermediate (mesoptic) range of brightnesses. During light adaptation the threshold contour of the receptive field narrows sharply, mainly because of the fall in sensitivity of its peripheral inputs. Compared with the lateral geniculate body and retina, the relative number of low-threshold elements, sensitivity in the system of inhibitory elements, and differential brightness sensitivity are greater in the cortex. The mechanisms of formation of receptive fields of cortical neurons and their modification during changes in the level of adaptation, and also the role of excitatory and inhibitory inputs of the cell in these effects are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 227–235, May–June, 1979.  相似文献   

4.
Orientation tuning (OT) of 68 visual cortex neurons (field 17) was studied in cats under conditions of a GABA-ergic inhibition blockade by microiontophoretic bicuculline applications; the neuronal responses were evoked by flashing light strips. All characteristics of orientational detection in most neurons got worse after the applications. The OT became wider in 76.3% of cases: its mean value increased from 52.7±2.8° to 85.2±4.6°. In 63.6% of cases OT selectivity decreased by one-third, and in 68.5% of neurons the detection quality decreased by 60%, on average. The threshold dose of bicuculline causing the OT extension was injected by the phoretic current of 31.0±4.5 nA, and the optimum effect was reached at 67.1±6.0 nA. The background activity and the response magnitude increased under the bicuculline influence 3.0 and 4.4 times, respectively, compared with the control. A few minutes after the iontophoresis termination, the frequency of neuronal discharges and OT characteristics returned to their initial values. We conclude that the local blocking of intracortical inhibition, which causes disinhibition of afferent inputs from the neighboring cells with different (compared with the recorded cell) preferred orientations, considerably worsens orientational specificity of visual cortex neurons, or even results in a complete loss of such specificity. These data are consistent with the concept that intracortical inhibition plays a leading role in the formation and sharpening of OT in the visual cortex neurons.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 54–62, January–February, 1995.  相似文献   

5.
Unit responses of neurons of zone 17 in the cat striate cortex to stripes of different widths were studied. Changes in the number of spikes during different time intervals (cuts) from the beginning of the response were analyzed in relation to stimulus area. Comparison of the results with those obtained by the study of receptive fields of the lateral geniculate body showed a significant difference in the dynamics of inhibition between cortical and geniculate receptive fields. Similar results were obtained when cortical unit responses to simultaneous and consecutive appearance of two stripes in the receptive field, one in the excitatory zone and the other at the inhibitory periphery, were studied. Evidence of the longer duration of cortical inhibition also was obtained by the same technique. When both stripes were placed in the excitatory center of the field another feature of cortical inhibition was revealed: its dependence on the order of stimulus application. If the order of stimulus application coincided with the optimal direction of movement of the stripe for the given field, the unit response to the next stimulus was strongly facilitated by the action of the stimulus applied previously. Application of stimuli in the opposite order invoked inhibition. The sensitivity of inhibition to the order of stimulus application was observed in the center of the field; it diminished toward the periphery, where application of the stimuli in any order evokes inhibition of the response.Medical Academy, Sofia, Bulgaria, I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 339–346, July–August, 1977.  相似文献   

6.
Spike responses of single neurons in the primary visual cortex and lateral geniculate body to random presentation of local photic stimuli in different parts of the receptive field of the cell were studied in acute experiments on curarized cats. Series of maps of receptive fields with time interval of 20 msec obtained by computer enabled the dynamics of the excitatory and inhibitory zones of the field to be assessed during development of on- and off-responses to flashes. Receptive fields of all cortical and lateral geniculate body neurons tested were found to undergo regular dynamic reorganization both after the beginning and after the end of action of the photic stimulus. During the latent period of the response no receptive field was found in the part of the visual field tested, but later a small zone of weak responses appeared only in the center of the field. Gradually (most commonly toward 60–100 msec after application of the stimulus) the zone of the responses widened to its limit, after which the recorded field began to shrink, ending with complete disappearance or disintegration into separate fragments. If two bursts of spikes were generated in response to stimulation, during the second burst the receptive field of the neuron changed in the same way. The effects described were clearly exhibited if the level of background illumination, the intensity of the test bars, their contrast with the background, duration, angles subtended, and orientation were varied, although the rate and degree of reorganization of the receptive field in this case changed significantly. The functional importance of the effect for coding of information about the features of a signal by visual cortical neurons is discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 622–630, November–December, 1982.  相似文献   

7.
A geometrical model for the dynamics of orientation tuning of visual neurones was proposed, which makes it possible to study the dynamics of configuration, localization, and weight of excitatory and inhibitory subzones of the receptive field. The model reproduces typical patterns of orientation tuning dynamics, observed in neurophysiological experiments on cat visual cortex neurones. The parameters of the model (size and mutual position of excitatory and inhibitory zones of the receptive field, their weight, and dynamics type) were estimated that correspond to the main types of orientation tuning dynamics in natural conditions. It is shown that selective and acute tuning of neurones can be formed and/or sharpened by intracotrical inhibition, while the dynamics of preferred orientation is due to changes in the geometry of the inhibitory subzone of the receptive field.  相似文献   

8.
Experiments using intracellular recording of potentials from neurons of the primary auditory cortex of cats anesthetized with pentobarbital showed that under the influence of tones of characteristic frequency for the neuron under test, or of electrical stimulation of nerve fibers of the spiral ganglion, innervating the center of the receptive field of the neuron, transient excitation of the latter is followed by the development of prolonged (20–250 msec) inhibition. The cause of this inhibition is an IPSP arising in the neuron after the action potential. On the basis of data showing a close connection between inhibition and the preceding spike it is concluded that it arises through the participation of a mechanism of recurrent inhibition. During the action of tones of uncharacteristic frequency or electrical stimulation of the peripheral part of the receptive field of the neuron, a response consisting of EPSP-IPSP arises in the neuron. This IPSP is accompanied by inhibition of spontaneous activity of the neuron and its responses to testing stimulation. It has been shown that this inhibition is lateral in its genesis. Characteristics of these two types of inhibition are given.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 194–201, March–April, 1984.  相似文献   

9.
Orientation tuning (OT) of 225 cat neurons of the primary visual cortex (field 17) to the flashing of a light bar in the discharge centers of their receptive field (RFs) were investigated. It was found that 43% of the cells investigated were monomodally tuned, i.e., were primarily detecting horizontal and vertical orientations. The remaining 57% of the neurons exhibited double OT, i.e, exhibited, in addition to a main preferred orientation (PO), an additional preferred orientation (aPO) at a right or acute angle to the main orientation (the mean angle between the two OT maxima equalled 71.4±2.4°). In bimodal cells, the additional maximum of OT was comparable in magnitude to the main maximum (averaging 0.7±0.03 of the PO) in half the cases. The orientational properties of the main and additional maxima were almost indistinguishable. Under light or moderate anesthesia, approximately half the neurons with double OT became monomodal; at the same time, a small fraction of monomodal cells (12%) manifested double OT. Under anesthesia, the angle between two the preferred orientations decreased, while the ratio of amplitude characteristics remained unchanged. Monomodal neurons frequently exhibited simple RFs and OTs unaffected by anesthesia. Neurons with double OT, on the other hand, exhibited simple and complex types of RFs just as often and their OT changed under the influence of anesthesia. It is suggested that neurons with double OT can function as detectors of angles and angles of intersecting lines; such angles, together with line orientation, are important attributes of images. In contrast, monomodal neurons may provide a benchmark for a stable reference system of orientation coordinates. The interaction of the two neuronal systems mentioned may allow effective analysis of image attributes at the level of the primary visual cortex.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 260–269, May–June, 1992.  相似文献   

10.
Spontaneous and evoked synaptic activity of command neurons for the defensive response of spiracle closing were studied by simultaneous intracellular recording of activity of several identified CNS neurons in snails. Comparison of monosynaptic EPSPs in command neurons evoked by discharges of presynaptic neurons with spontaneous synaptic potentials indicated that the central organization of the defensive reflex is in the form of a two-layered neuron net in which each neuron of the afferent layer possesses a local receptive field, but which overlaps with other afferent neurons. Each neuron of the afferent layer is connected with each neuron of the efferent layer by monosynaptic excitatory connections that differ in efficiency (maximal only with one neuron of the efferent layer). Both receptive fields of neurons of the afferent layer and "fields of efficiency of synaptic connections" are distributed according to the normal law. As a result of this organization the neuron net acquires a new quality: The action of different stimuli leads to the appearance of differently located "spatial excitation profiles" of efferent layer neurons even when this action of the stimulus occurs not at the center of the receptive field.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 26–34, January-February, 1984.  相似文献   

11.
Neurons in the central nucleus of the inferior colliculus (IC) receive excitatory and inhibitory inputs from both lower and higher auditory nuclei. Interaction of these two opposing inputs shapes response properties of IC neurons. In this study, we examine the interaction of excitation and inhibition on the responses of two simultaneously recorded IC neurons using a probe and a masker under forward masking paradigm. We specifically study whether a sound that serves as a probe to elicit responses of one neuron might serve as a masker to suppress or facilitate the responses of the other neuron. For each pair of IC neurons, we deliver the probe at the best frequency (BF) of one neuron and the masker at the BF of the other neuron and vice versa. Among 33 pairs of IC neurons recorded, this forward masking produces response suppression in 29 pairs of IC neurons and response facilitation in 4 pairs of IC neurons. The degree of suppression decreases with recording depth, sound level and BF difference between each pair of IC neurons. During bicuculline application, the degree of response suppression decreases in the bicuculline-applied neuron but increases in the paired neuron. Our data indicate that the forward masking of responses of IC neurons observed in this study is mostly mediated through GABAergic inhibition which also shapes the discharge pattern of these neurons. These data suggest that interaction among individual IC neurons improves auditory sensitivity during auditory signal processing.  相似文献   

12.
13.
In the primate visual pathway, orientation tuning of neurons is first observed in the primary visual cortex. The LGN cells that comprise the thalamic input to V1 are not orientation tuned, but some V1 neurons are quite selective. Two main classes of theoretical models have been offered to explain orientation selectivity: feedforward models, in which inputs from spatially aligned LGN cells are summed together by one cortical neuron; and feedback models, in which an initial weak orientation bias due to convergent LGN input is sharpened and amplified by intracortical feedback. Recent data on the dynamics of orientation tuning, obtained by a cross-correlation technique, may help to distinguish between these classes of models. To test this possibility, we simulated the measurement of orientation tuning dynamics on various receptive field models, including a simple Hubel-Wiesel type feedforward model: a linear spatiotemporal filter followed by an integrate-and-fire spike generator. The computational study reveals that simple feedforward models may account for some aspects of the experimental data but fail to explain many salient features of orientation tuning dynamics in V1 cells. A simple feedback model of interacting cells is also considered. This model is successful in explaining the appearance of Mexican-hat orientation profiles, but other features of the data continue to be unexplained.  相似文献   

14.
Two-dimensional spatial frequency characteristics of receptive fields of 46 neurons in the lateral suprasylvian area of the cat cortex were obtained. These receptive fields possessed orientation anisotropy. Peak frequencies lay in the frequency region below 1.5 cycles/deg. The transmission band width was measured during optimal orientation of test gratings in 21 neurons. It averaged 1.47±0.6 octave. In the remaining neurons the lower boundary frequency was shifted into the region of spatial frequencies below the range used. During nonoptimal orientation of test gratings, inhibition of the discharge was observed in 17 neurons. The inhibitory spatial frequency characteristics of six neurons were of the narrow band type, and averaged 1.1±0.6 octave.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 608–614, November–December, 1982.  相似文献   

15.
Spatio-temporal interactions within complex receptive fields in the cat visual cortex were investigated by sequential presentation of two stationary stimuli. When two stimuli were presented in phase (on-on or off-off) in the order corresponding to preferred direction of movement, facilitation or weak inhibition of the response to the second stimulus was observed, whereas if it corresponded to zero direction of movement, the response was strongly inhibited. In the case of stimulation out of phase (on-off or off-on), in the order corresponding to the preferred direction of movement, considerable inhibition of the response to the second stimulus was observed, whereas in the opposite order, facilitation or weak inhibition was observed. The strength of interaction between different parts of the field depended on the distance between them and the duration of the interval between stimuli. Directional selectivity of "complex" neurons is thus ensured by asymmetry of spatio-temporal interactions between receptive field inputs of the same type. Interactions between inputs of different types, arising when a multiedge stimulus (bar, grating) can be used by the visual system to distinguish an object from the background and to assess changes in size of objects and the relative velocity of their movement.V. Kapsukas State University, Vilnius. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 505–512, July–August, 1984.  相似文献   

16.
Recovery cycles of unit responses in the primary visual cortex to local photic stimulation of their receptive fields were studied in unanesthetized, immobilized cats by the paired stimulus method. In most cases the process of recovery of neuronal reactivity did not follow a steady course. Recovery from depression evoked by the first stimulus took place more suddenly in neurons in the central part of the visual field, and initial recovery of activity was more complete than in peripheral neurons. Differences in the synchronization of inhibitory and excitatory inputs to neurons responsible for central and peripheral vision are discussed.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 233–240, May–June, 1981.  相似文献   

17.
The information in the nervous spike trains and its processing by neural units are discussed. In these problems, our attention is focused on the stochastic properties of neurons and neuron populations. There are three subjects in this paper, which are the spontaneous type neuron, the forced type neuron and the reciprocal inhibitory pairs.
  1. The spontaneous type neuron produces spikes without excitatory inputs. The mathematical model has the following assumptions. The neuron potential (NP) has the fluctuation and obeys the Ornstein-Uhlenbeck process, because the N P is not so perfectly random as that of the Wiener process but has an attraction to the rest value. The threshold varies exponentially and the NP has the constant lower limit. When the NP reaches the threshold, the neuron fires and the NP is reset to a certain position. After a firing, an absolute refractory period exists. In discussing the stochastic properties of neurons, the transition probability density function and the first passage time density function are the important quantities, which are governed by the Kolmogorov's equations. Although they can be set up easily, we can rarely obtain the analytical solutions in time domain. Moreover, they cover only simple properties. Hence the numerical analysis is performed and a good deal of fair results are obtained and discussed.
  2. The forced type neuron has input pulse trains which are assumed to be based on the Poisson process. Other assumptions and methods are almost the same as above except the diffusion approximation of the stochastic process. In this case, we encounter the inhomogeneous process due to the pulse-frequency-modulation, whose first passage time density reveals the multimodal distribution. The numerical analysis is also tried, and the output spike interval density is further discussed in the case of the periodic modulation.
  3. Two types of reciprocal inhibitory pairs are discussed. The first type has two excitatory driving inputs which are mutually independent. The second type has one common excitatory input but it advances in two ways, one of which has a time lag. The neuron dynamics is the same as that of the forced type neuron and each neuron has an identical structure. The inputs are assumed to be based on the Poisson process and the inhibition occurs when the companion neuron fires. In this case, the equations of the probability density functions are not obtained. Hence the computer simulation is tried and it is observed that the stochastic rhythm emerges in spite of the temporally homogeneous inputs. Furthermore, the case of inhomogeneous inputs is discussed.
  相似文献   

18.
The functional role of GABAergic inhibition in shaping the frequency tuning of 96 neurons in the torus semicircularis of the leopard frog, Rana pipiens, was studied using microiontophoresis of the GABAA receptor antagonist, bicuculline methiodide. Bicuculline application abolished, or reduced in size, the inhibitory tuning curves of 72 neurons. In each case, there was a concommitant broadening of the excitatory tuning curve such that frequency-intensity combinations that were inhibitory under control conditions, became excitatory during disinhibition with bicuculline methiodide. These effects were observed irrespective of the excitatory tuning curve configuration prior to bicuculline methiodide application. Results indicate an important role for GABA-mediated inhibition in shaping the frequency selectivity of neurons in the torus semicircularis of the leopard frog. Bicuculline application also affected several other response properties of neurons in the leopard frog torus. Disinhibition with bicuculline methiodide increased both the spontaneous firing rate (18 cells) and stimulus-evoked discharge rate (81 cells) of torus neurons, decreased the minimum excitatory threshold for 18 cells, and altered the temporal discharge pattern of 47 neurons. Additional roles for GABAergic inhibition in monaural signal analysis are discussed. Accepted: 25 August 1999  相似文献   

19.
The distribution of 70 visually sensitive neurons in the cat pulvinar sensitive to motion in the receptive fields was studied. The experimental results showed that components with directional characteristics are present in the structure of these fields of both direction-selective and unselective neurons. In the receptive fields of direction-selective neurons the directional elements of the substructure have identical preferred directions, which coincide with the preferred directions of response to stimulus movement over the entire receptive field. The organization of receptive fields of direction-selective neurons of the visual association structure thus does not differ significantly from that of analogous fields of visual projection neurons. Directional elements of the receptive fields of direction-unselective neurons were found to have different preferred directions, thereby providing a basis for organization of the nondirectional response of the neuron to a stimulus moving across the entire receptive field.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 339–346, July–August, 1982.  相似文献   

20.
Experiments on cats anesthetized with pentobarbital showed that, depending on the intensity and frequency of acoustic stimulation, neurons in auditory area AI give responses of EPSP, EPSP-spike-IPSP, EPSP-IPSP, and IPSP type. Presentation of a tone of characteristic or near-characteristic frequency and above-threshold intensity, and also electrical stimulation of nerve fibers of the spiral ganglion, innervating the central zone of the receptive field of the neuron, evoke in most cases a response of EPSP-spike-IPSP type. Tone differing considerably in frequency from the characteristic, and electrical stimulation of peripheral zones of the receptive field, evoked responses of EPSP-IPSP or IPSP type. The range of frequencies of tones to which, at threshold intensity, an action potential is generated by the neuron is considerably narrower than the range of frequencies of tones evoking an EPSP and IPSP. Above the intensity of tone threshold IPSP is an invariable component of the response of most neurons in area AI. The appearance of an IPSP in the neuron is accompanied by depression of spontaneous activity and the neuronal response to testing stimulation. Two types of IPSP were distinguished: One type is a component of the EPSP-spike-IPSP response and arises during excitation of auditory receptors located in the central part of the receptive field of the neuron, the other arises during excitation of receptors located at the periphery of the field, and which project to neurons with other characteristic frequencies. The former arise after spike excitation of the neuron, the latter after EPSP or primarily.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 123–131, January–February, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号