首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to a prominent role in tissue energy conversion, fatty acids are involved in signal transduction and modulation of cellular protein localization and function. The latter is accomplished by acylation of specific cellular proteins. In the present study the amount of fatty acyl moieties covalently bound to cardiac proteins and the effect of myocardial ischemia and reperfusion on the degree and relative fatty acyl composition of cardiac proteins have been investigated in isolated rat hearts. In the normoxic heart about 0.32% of the cellular fatty acyl pool is covalently bound to proteins. Approximately 90% of these fatty acyl chains are thio-esterified, whereas a relatively minor part is attached to cardiac proteins through amide linkage. Thio-esterified fatty acyl chains are derived from palmitic, stearic, oleic, linoleic, arachidonic and docosahexaenoic acid. In contrast, amide linked protein acylation shows a preference for myristic acyl chains. Acute ischemia and reperfusion inflicted upon the isolated rat heart did enhance significantly the content of (unesterified) fatty acids, but did neither affect the degree of protein acylation nor the relative fatty acyl composition of acylated proteins in cardiac tissue.  相似文献   

2.
The unicellular, wall-less alga Dunaliella salina has been shown to contain an array of proteins modified by the covalent attachment of fatty acids. Myristic acid (14:0) comprised approximately 80% by weight of the protein-linked acyl groups in samples derived from cells cultured in medium containing 1.7 molar NaCl and 93% in samples from cells grown in medium containing 3.0 molar NaCl. Palmitic and stearic acids accounted for most of the remaining protein-bound acyl chains. Approximately 0.2% of the incorporated radioactivity was estimated to be in linkage with protein. The bulk of acyl chains (about 99%) were resistant to cleavage by alkali, indicating a preponderance of amide bonding. The sodium dodecyl sulfate-polyacrylamide electrophoresis labeling pattern of proteins from [3H]myristic-labeled cells was significantly different from that of proteins from cells exposed to [3H]palmitate. The appearance of radioactivity in certain proteins was also influenced by the salinity of the culture medium. Thus growth in moderate (1.7 molar) salt favored the acylation of a 48-kilodalton polypeptide whereas in high (3.0 molar) salt, a 17-kilodalton polypeptide was more heavily labeled.  相似文献   

3.
Martin GG  Huang H  Atshaves BP  Binas B  Schroeder F 《Biochemistry》2003,42(39):11520-11532
Although liver fatty acid binding protein (L-FABP) is known to bind not only long chain fatty acid (LCFA) but also long chain fatty acyl CoA (LCFA-CoA), the physiological significance of LCFA-CoA binding has been questioned and remains to be resolved. To address this issue, the effect of L-FABP gene ablation on liver cytosolic LCFA-CoA binding, LCFA-CoA pool size, LCFA-CoA esterification, and potential compensation by other intracellular LCFA-CoA binding proteins was examined. L-FABP gene ablation resulted not only in loss of L-FABP but also in concomitant upregulation of two other intracellular LCFA-CoA binding proteins, acyl CoA binding protein (ACBP) and sterol carrier protein-2 (SCP-2), by 45 and 80%, respectively. Nevertheless, the soluble fraction from livers of L-FABP (-/-) mice bound 95% less radioactive oleoyl-CoA than wild-type L-FABP (+/+) mice. The intracellular LCFA-CoA binding protein fraction (Fraction III) from wild-type L-FABP (+/+) mice, isolated by gel permeation chromatography of liver soluble proteins, exhibited one high-affinity binding and several low-affinity binding sites for cis-parinaroyl-CoA, a naturally occurring fluorescent LCFA-CoA. In contrast, high-affinity LCFA-CoA binding was absent from Fraction III of L-FABP (-/-) mice. While L-FABP gene ablation did not alter liver LCFA-CoA pool size, LCFA-CoA acyl chains of L-FABP (-/-) mouse livers were enriched 2.1-fold in C16:1 and decreased 1.9-fold in C20:0 fatty acids. Finally, L-FABP gene ablation selectively increased the amount of LCFAs esterified into liver phospholipid > cholesteryl ester, while concomitantly decreasing the amount of fatty acids esterified into triglycerides by 40%. In summary, these data with L-FABP (-/-) mice demonstrated for the first time that L-FABP is a physiologically significant contributor to determining liver cytosolic LCFA-CoA binding capacity, LCFA-CoA acyl chain distribution, and esterified fatty acid distribution.  相似文献   

4.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

5.
Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Delta(11) fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Delta(11) was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (alpha-elongation). In wild-type cells, the C16:1Delta(11) elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Delta mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation that ole1Delta mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Delta(11)) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Delta(9)) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway.  相似文献   

6.
An enzymatic basis for the formation of pulmonary surfactant lipids in rat has been presented. The free fatty acid pools in lung and liver consisted mainly of palmitic, stearic, oleic, and arachidonic acids with relatively less polyunsaturated fatty acids in lung than in liver. The acyl chain specificities of the acyl-CoA synthetase systems in lung and liver microsomes were similar in that most of fatty acids found in the free fatty acid pools were effectively activated by both systems. The acyl-CoA pools had compositions significantly different from those of the free fatty acid pools in lung and liver with relatively more stearate and less polyunsaturated fatty acids. The lung acyl-CoA pool contained mainly palmitate (29%), stearate (31%), and oleate (22%) with very little polyunsaturated acyl-CoAs to compete for esterification. The use of an equimolar mixture of palmitoyl-CoA and arachidonoyl-CoA to acylate the endogenous monoacyl-glycerophosphocholine isomers in the lung microsomes yielded both the 2-palmitate and 2-arachidonate diacyl forms, whereas the major products formed by liver microsomes were the 2-arachidonate and 1-palmitate forms. These results indicate that the 1-acyl isomer is the major monoacyl-glycerophosphocholine species serving as substrate in lung microsomes, whereas both 1-acyl and 2-acyl isomers are present in liver microsomes. Thus, the enrichment of saturated and oligoenoic acids in the acyl-CoA pool combined with the predominance of the 1-acyl isomer in the acyl acceptor pool and the relatively higher selectivity for palmitoyl-CoA by the 1-acyl-GPC acyltransferase activity of lung constitute an important basis for attributing some of the formation of pulmonary surfactant lipids in rats to acyltransferase action.  相似文献   

7.
We have isolated and identified a unique subclass of alkyldiacylglycerols from the pink portion of the harderian gland of the New Zealand white rabbit. Using chemical, enzymic, chromatographic, and physical procedures, the lipid class has been identified as 1-alkyldiacylglycerol containing 1 mole of isovaleric acid. More than 50% of the O-alkyl moieties consist of 16:0 and 18:0 carbon chains, whereas the other major O-alkyl moieties are 15:0 and 17:0 branched chains ( approximately 30%). The long-chain acyl groups of the alkyldiacylglycerol subclass consist primarily of saturated fatty acids (60% 16:0 and 30% 18:0) and a small amount of branched-chain fatty acids ( approximately 5%), whereas the 3-position appears to be occupied by isovaleric acid.  相似文献   

8.
The lipid modification of membrane proteins was investigated in Acholeplasma laidlawii by metabolic labeling and by chemical analysis. A S-glycerylcysteine residue was identified from membrane proteins and we reported the strong preference for saturated acyl chains into the lipid modification. Differential release of fatty acids revealed a ratio [(O-ester- + amide-bound acyl chains)/O-ester-linked chains] close to 1.1 which suggests the involvement of only two O-ester linked fatty acids in the acylation process. Present data indicate that acyl proteins in A. laidlawii are true lipoproteins (mainly diacylated) probably processed by a mechanism analogous to that described for eubacteria and other mycoplasmas. Received: 9 March 2001 / Accepted: 17 April 2001  相似文献   

9.
SYNOPSIS. A reduction in the growth temperature of Tetrahymena pyriformis strain WH-14 from 35 C to 15 C resulted in distinct alterations in the fatty acid composition of the glycerophospholipids. The proportion of normal saturated acids declined from 26 to 19%; palmitoleic acid increased by 6%, and the composition of the polyunsaturated fatty acids increased in 18:2 Δ6,11(n) and decreased in 18:2 Δ9,12(n) and 18:3 Δ6,9,12(n). The unsaturation index (the average number of double bonds/100 molecules) did not change with a shift in temperature.
Two biosynthetic pathways exist in Tetrahymena for the formation of unsaturated fatty acids. The observed changes in fatty acid composition that accompany a lowering of the environmental temperature can be accounted for by a reduction in the accumulation of products of the fatty acid pathway leading to the formation of γ-linolenic acid [16:0(n) → 18:0(n) → 18:1 Δ9(n) → 18:2 Δ9,12(n) → 18:3 Δ6,9,12(n)] and an increase in the components of the pathway leading to the formation of 18:2 Δ6,11(n) [16:0(n) → 16:1 Δ9(n) → 18:1 Δ11(n) → 18:2 Δ6,11(n)]. The data suggest that the regulatory mechanism in Tetrahymena differs from that found in some bacteria where a simple substitution of unsaturated fatty acids for saturated fatty acids occurs at low culture temperatures.  相似文献   

10.
The heart contractility and changes of lipid composition of isolated rat heart (n = 26) under total ischemia and ischemia-reperfusion was studied. The effect of N-stearoyl-ethanolamine under these conditions was investigated. N-stearoyl-ethanolamine leads to remodelling of fatty acyl chain composition of myocardial phospholipids: to drastic fall of polyunsaturated fatty acyl chains (18:2w6, 20:3w6, 20:4w6, 22:5w3, 22:5w6, 22:6w3 and 22:6w6) and enhancement of 18:0. This can be caused by N-stearoyl-ethanolamine-induced suppression of polyunsaturated fatty acids synthesis. Naturally occurring minor lipids--N-acyl phosphatidylethanolamine and its derivative N-acylethanolamine were detected in isolated rat heart under ischemia-reperfusion. It is notable that approximately 12% of total N-acylethanolamines were composed by anandamide. Treatment of N-acyl phosphatidylethanolamine by phospholipase D with subsequent fatty acyl chain analysis demonstrates that fatty acid composition of both N-acyl chains of N-acyl phosphatidylethanolamine and free N-acylethanolamine are similar and their main fatty acyl chains are 16:0, 18:0 and 20:4w6. It was shown that exogenous N-stearoyl-ethanolamine did not alter the levels of endogenous N-acyl phosphatidylethanolamine and N-acylethanolamine, but caused the decrease of lyso-phosphatidylcholine and phosphatidylglycerol levels. The rate of heart contractility and heart relaxation was found to increase during the early period of reperfusion. N-stearoyl-ethanolamine prevents this alteration and exerts a negative inotropic effect. It is concluded that membrane protective properties of N-stearoyl-ethanolamine at least partly depend on its ability to inhibit decrease amount of arachidonic and docosahexaenoic acids, to modulate the fatty acyl chains of cardiac phospholipids and to decrease the level of lyso-phosphatidylcholine.  相似文献   

11.
Abstract: Changes in the free fatty acid pool size and fatty acyl chain composition of mitochondrial membrane phospholipids and their relation to disruption of mitochondrial function were examined in rat brains after 30 min of cerebral ischemia (Pulsinelli-Brierley model) and 60 min of normoxic reoxygenation. During ischemia, significant hydrolysis of polyunsaturated molecular species from diacyl phosphatidylcholine, particularly fatty acyl 20:4 (arachidonic acid; 20% decrease) and 22:6 (docosahexaenoic acid; 15% decrease), was observed. Thirty minutes of ischemia caused a 16% loss of 18:2 (linoleic acid) from phosphatidylethanolamine. Recirculation for 60 min did not return the polyunsaturated fatty acid content of phospholipids to normal. Total content of free fatty acids increased during ischemia, particularly 18:2 and 22:6, which exhibited the most dramatic rise. The free fatty acid pool size continued to increase during 60 min of recirculation. The respiratory control ratio decreased significantly during 30 min of ischemia with no apparent recovery following 60 min of reoxygenation. The degree of free radical-mediated lipid peroxidation in mitochondria was significantly increased during ischemia and reperfusion. It was concluded that (a) 30 min of cerebral ischemia caused differential degradation in each of the phospholipid classes and preferential hydrolysis of the polyunsaturated molecular species and (b) 60 min of normoxic reperfusion failed to promote reacylation of the mitochondrial phospholipids and restoration of normal respiration.  相似文献   

12.
Both the content and composition of polar and neutral lipids from the mitochondrial fraction of ovarian full-grown Bufo arenarum oocytes were analysed in the present study. Triacylglycerols (TAG) represent 33% of the total lipids, followed by phosphatidylcholine (PC), free fatty acids (FFA) and phosphatidylethanolamine (PE). Diphosphatidylglycerol (DPG) or cardiolipin, a specific component of the inner mitochondrial membrane, represents about 4% of the total lipid content. Palmitic (16:0) and arachidonic (20:4n6) acids are the most abundant fatty acids in PC and PE, respectively. DPG is enriched in fatty acids with carbon chain lengths of 18, the principal component being linoleic acid. In phosphatidylinositol (PI), 20:4n6 and stearic acid (18:0) represent about 72 mol% of the total acyl group level. The main fatty acids in TAG are linoleic (18:2), oleic (18:1), and palmitic acids. The fatty acid composition of FFA and diacylglycerols (DAG) is similar, 16:0 being the most abundant acyl group. PE is the most unsaturated lipid and sphingomyelin (SM) has the lowest unsaturation index.  相似文献   

13.
Myelin proteolipid protein (PLP) is an acylated protein which contains approximately 2 mol of ester-bound fatty acids. In this study, the amount and composition of fatty acids covalently bound to human myelin PLP were determined during development and in peroxisomal disorders. Palmitic, oleic, and stearic acids accounted for most of the PLP acyl chains. However, in contrast to PLP in other species, human PLP contains relatively more very long chain fatty acids (VLCFA). The fatty acid composition remained essentially unchanged between 1 day and 74 years of age. The total amount of fatty acid bound to PLP was not altered in any of the pathological cases examined. However, in the peroxisomal disorder adrenoleukodystrophy, the proportions of saturated and, to a lesser extent, monounsaturated VLCFA bound to PLP were increased at the expense of oleic acid. Smaller, but significant, changes were observed in adrenomyeloneuropathy. The reduction in the levels of oleic acid was also observed in two other peroxisomal disorders, the cerebrohepatorenal (Zellweger) syndrome and neonatal adrenoleukodystrophy, as well as in the lysosomal disorder Krabbe globoid cell leukodystrophy. However, in these disorders, the decrease in oleic acid occurred at the expense of stearic acid, and not VLCFA. The results indicate that, although a characteristic PLP fatty acid pattern is normally maintained, changes in the acyl chain pool can ultimately be reflected in the fatty acid composition of the protein. The altered PLP-acyl chain pattern in peroxisomal disorders may contribute to the pathophysiology of these devastating disorders.  相似文献   

14.
UDP-glucose (UDP-Glc):fatty acid glucosyltransferases catalyze the UDP-Glc-dependent activation of fatty acids as 1-O-acyl-[beta]-glucoses. 1-O-Acyl-[beta]-glucoses act as acyl donors in the biosynthesis of 2,3,4-tri-O-acylglucoses secreted by wild tomato (Lycopersicon pennellii) glandular trichomes. The acyl composition of L. pennellii 2,3,4-tri-O-acylglucoses is dominated by branched short-chain acids (4:0 and 5:0; approximately 65%) and straight and branched medium-chain-length fatty acids (10:0 and 12:0; approximately 35%). Two operationally soluble UDP-Glc:fatty acid glucosyltransferases (I and II) were separated and partially purified from L. pennellii (LA1376) leaves by polyethylene glycol precipitation followed by DEAE-Sepharose and Cibacron Blue 3GA-agarose chromatography. Whereas both transferases possessed similar affinity for UDP-Glc, glucosyltransferase I showed higher specificity toward short-chain fatty acids (4:0) and glucosyltransferase II showed higher specificity toward medium-chain fatty acids (8:0 and 12:0). The overlapping specificity of UDP-Glc:fatty acid glucosyltransferases for 4:0 to 12:0 fatty acid chain lengths suggests that the mechanism of 6:0 to 9:0 exclusion from acyl substituents of 2,3,4-tri-O-acylglucoses is unlikely to be controlled at the level of fatty acid activation. UDP-Glc:fatty acid glucosyltransferases are also present in cultivated tomato (Lycopersicon esculentum), and activities toward 4:0, 8:0, and 12:0 fatty acids do not appear to be primarily epidermal when assayed in interspecific periclinal chimeras.  相似文献   

15.
Isoprenylation is an important posttranslational modification that affects the activity, subunit interactions and membrane anchoring of different eukaryotic proteins. The small, cell-wall-less prokaryote Acholeplasma laidlawii has more than 20 membrane acyl-proteins enriched in myristoyl and palmitoyl chains. Radioactive mevalonate, a precursor to isoprenoids, was incorporated into several specific membrane proteins of 20 to 45 kDa and two soluble proteins of 23-25 kDa, respectively. No acyl proteins and none of the polar acyl lipids became labelled but these are all labelled by radioactive fatty acids. Mevalonate was incorporated mainly into a minor neutral, non-saponifiable lipid which migrated just above a C30-isoprenoid (squalene) on TLC-plates. The isoprenoid chains could not be released by mild alkaline hydrolysis from most of the isoprenylated proteins, although this procedure releases acyl chains from lipids and all acylated proteins. Isoprenylated proteins were enriched in the detergent phase upon partition with the non-ionic detergent Triton X-114. This behaviour is similar to the acyl proteins of this organism and indicates that the isoprenoid chains give the proteins a hydrophobic character.  相似文献   

16.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

17.
G K Khuller  H Goldfine 《Biochemistry》1975,14(16):3642-3647
The effect of exogenous unsaturated fatty acids on the acyl and alk-1-enyl group composition of the phospholipids of Clostridium butyricum has been examined. Unsaturated fatty acids support the growth of this organism in the absence of biotin. When cells were grown at 37 degrees in media containing oleate or linoleate and a Casamino acid mixture containing traces of biotin, the exogenous fatty acids were found mainly in the alk-1-enyl chains of the plasmalogens with less pronounced incorporation into the acyl chains. However, at 25 degrees in this medium, both the acyl and alk-1-enyl chains contained substantial amounts of the 18:1 supplement plus the C19-cyclopropane chains derived from it. Ak-1-enyl chains in all the major phosphatide classes showed a uniformly high substitution by the oleate supplement in cells grown at 37 degrees. The oleate and C19-cyclopropane content of the acyl chains was more variable among the phosphatide classes. At 37 degrees, trans-9-octadecenoic acid (elaidic acid) also supported growth and was incorporated into both acyl and alk-1-enyl chains at a high level. When cells were grown on oleate at 37 degrees in media containing biotin-free Casamino acids, both the acyl and alk-1-enyl chains had a high level of 18:1 plus C19-cyclopropane chains. In the cells grown at 37 degrees with oleate substantial changes were seen in the phospholipid class composition. There was a large decrease in the ethanolamine plus N-methylethanolamine plasmalogens with a corresponding increase in the glycerol acetals of these plasmalogens. The glycerol phosphoglycerides were also significantly lower with the appearance of an unknown, relatively nonpolar phospholipid fraction.  相似文献   

18.
Phosphatidylethanolamine of 15 degrees C-grown Tetrahymena pyriformis (NT-I) cells contains more polyunsaturated fatty acids than 39.5 degrees C-grown cells. This increase in unsaturation is due to an increase in linoleic (C18 : 2) and linolenic (C18 : 3) acids, and a decrease in myristic (C14 : 0), palmitic (C16 : 0), palmitoleic (C16 : 1) and heptadecanoic (C17 : 0) acids. Compared with 39.5 degrees C-grown cells, the proportion of palmitic acid (C16 : 0) decreased in the 1-position as does at the 2-position in 15 degrees C-grown cells. On the contrary, there is a significant increase in linoleic (C18 : 2 delta 9, 12) and gamma-linolenic (gamma-C18 : 3) acids in the 1- and 2-positions, respectively. Phosphatidylethanolamine has been subfractionated into seven different diglyceride species. In 15 degrees C cells, the amounts of fractions 2 (1-linolenoyl-2-linoleoyl) and 3 (1-linolenoyl-2-palmitoleoyl, 1-linolenoyl-2-oleoyl) increased while there was a great decrease in subfraction 7 (1-myristoyl-2-palmitoleoyl, 1-palmitoyl-2-palmitoleoyl). Since subfractions 1 and 2 contain over 70% linoleic (C18 : 2) and linolenic (C18 : 3) acids, these fractions might be composed mainly of 1-linolenoyl-2-linolenoyl and 1-linolenoyl-2-linoleoyl molecular species at 15 degrees C. These data support evidence that phosphatidylethanolamine would play a principal role as an acceptor of acyl chains for temperature acclimation.  相似文献   

19.
The plasma membrane of Spiroplasma melliferum contains a major membrane-associated lipoprotein called spiralin. In this study, the processing pathway of spiralin was investigated by chemical analysis of the purified protein and by using [35S]cysteine, [35S]methionine, [14C]myristic acid (14C-14:0), [14C]palmitic acid (14C-16:0), and globomycin. SDS-PAGE analysis of membrane proteins showed the leader peptide cleavage of prospiralin and provided evidence for an apparent selectivity in the acylation: the unprocessed protein was labelled with 14C-16:0 only (O-ester-linked acyl chains), and the mature form with both 14C-labelled fatty acids (O-ester-linked + amide-linked chains). Chemical analysis of the purified protein revealed that spiralin contains S-glycerylcysteine and is covalently modified with two O-ester-linked acyl chains and one amide-linked fatty acid chain. However, a specific selectivity in the O- and the N-acylations was not confirmed; palmitate and stearate were the major components. The amounts of O-ester- and amide-linked acyl chains, the resistance to Edman degradation and the presence of S-glycerylcysteine together indicate that spiralin is a "classical" lipoprotein (i.e. is triacylated) and is probably processed by a mechanism similar to that described for gram-negative eubacteria. On the basis of these findings, a biogenesis pathway for spiralin is proposed.  相似文献   

20.
Cell culture systems have demonstrated a role for cytoplasmic fatty acid-binding proteins (FABP) in lipid metabolism, although a similar function in intact animals is unknown. We addressed this issue using heart fatty acid-binding protein (H-FABP) gene-ablated mice. H-FABP gene ablation reduced total heart fatty acid uptake 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6 compared with controls, respectively. Similarly, the amount of fatty acid found in the aqueous fraction was reduced 40 and 52% for [1-(14)C]16:0 and [1-(14)C]20:4n-6, respectively. Less [1-(14)C]16:0 entered the triacylglycerol pool, with significant redistribution of fatty acid between the triacylglycerol pool and the total phospholipid pool. Less [1-(14)C]20:4n-6 entered each lipid pool measured, but these changes did not alter the distribution of tracer among these pools. In gene-ablated mice, significantly more [1-(14)C]16:0 was targeted to choline and ethanolamine glycerophospholipids, whereas more [1-(14)C]20:4n-6 was targeted to the phosphatidylinositol (PtdIns) pool. H-FABP gene ablation significantly increased PtdIns mass 1.4-fold but reduced PtdIns 20:4n-6 mass 30%. Consistent with a reported effect of FABP on plasmalogen mass, ethanolamine plasmalogen mass was reduced 30% in gene-ablated mice. Further, 20:4n-6 mass was reduced in each of the three other major phospholipid classes, suggesting H-FABP has a role in maintaining steady-state 20:4n-6 mass in heart. In summary, H-FABP was important for heart fatty acid uptake and targeting of fatty acids to specific heart lipid pools as well as for maintenance of phospholipid pool mass and acyl chain composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号