首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetics of glucose transport in human red blood cells   总被引:5,自引:0,他引:5  
A quenched-flow apparatus and a newly developed automated syringe system have been used to measure initial rates of D-[14C]glucose transport into human red blood cells at temperatures ranging from 0 degrees to 53 degrees C. The Haldane relationship is found to be obeyed satisfactorily at both 0 and 20 degrees C, but Arrhenius plots of maximum D-[14C]glucose transport rates are non-linear under conditions of both equilibrium exchange and zero trans influx. Fitting of the data by non-linear regression to the conventional model for glucose transport gives values at 0 degrees C of 0.726 +/- 0.0498 s-1 and 12.1 +/- 0.98 s-1 for the rate constants governing outward and inward movements of the unloaded carrier molecule and 90.3 +/- 3.47 s-1 and 1113 +/- 494 s-1 for outward and inward movements of the carrier-glucose complex. Activation energies for these four rate constants are respectively 173 +/- 3.10, 127 +/- 4.78, 88.0 +/- 6.17 and 31.7 +/- 5.11 kJ X mol-1. These parameters indicate that at low temperatures the marked asymmetry of the transport mechanism arises mainly from the high proportion of inward-facing carriers and carrier-glucose complexes, and that there is a relatively small difference between the affinities of the carrier for glucose in the inward and outward-facing conformations. At high (physiological) temperatures the carrier is fairly evenly distributed between outward- and inward-facing conformations and the affinity for glucose is about 2.5-times greater outside than inside.  相似文献   

2.
Kinetic parameters of [2-14C]malonate uptake by the human erythrocyte membrane have been determined as Km, 24 mM and turnover number, 5 × 104 s–1. The translocation of this organic dianion is concentration, pH and temperature dependent. Competitive inhibition of malonate uptake by eosin and inorganic anions, strongly implies that a common route exists for both inorganic anions and organic dianions, namely the anion-exchange Band 3 protein. 14C-Malonate which is nonmetabolized in the erythrocyte, could be a useful probe for monitoring anion-exchange in reconstituted Band 3 systems.  相似文献   

3.
4.
Lithium transport pathways in human red blood cells   总被引:6,自引:3,他引:6       下载免费PDF全文
In human red cells, Li is extruded against its own concentration gradient if the external medium contains Na as a dominant cation. This uphill net Li extrusion occurs in the presence of external Na but not K, Rb, Cs, choline, Mg, or Ca, is ouabain-insensitive, inhibited by phloretin, and does not require the presence of cellular ATP. Li influx into human red cells has a ouabain-sensitive and a ouabain-insensitive but phloretin-sensitive component. Ouabain-sensitive Li influx is competitively inhibited by external K and Na and probably involves the site on which the Na-K pump normally transports K into red cells. Ouabain does not inhibit Li efflux from red cells containing Li concentrations below 10 mM in the presence of high internal Na or K, whereas a ouabain-sensitive Li efflux can be measured in cells loaded to contain 140 mM Li in the presence of little or no internal Na or K. Ouabain-insensitive Li efflux is stimulated by external Na and not by K, Rb, Cs, choline, Mg, or Ca ions. Na-dependent Li efflux does not require the presence of cellular ATP and is inhibited by phloretin, furosemide, quinine, and quinidine. Experiments carried out in cells loaded in the presence of nystatin to contain either only K or only Na show that the ouabain-insensitive, phloretin-inhibited Li movements into or out of human red cells are stimulated by Na on the trans side and inhibited by Na on the cis side of the red cell membrane. The characteristics of the Na-dependent unidirectional Li fluxes and uphill Li extrusion are similar, suggesting that they are mediated by the same Na-Li countertransport system.  相似文献   

5.
Chloride self-exchange in human red cells was studied between 0 degrees C and 38 degrees C. At higher temperatures the flow-tube method was used. Although the general features of chloride transport at 0 degrees C and 38 degrees C are similar, the following differences were found: (a) the maximum pH of chloride self-exchange flux was lowered 0.6 pH unit from 7.8 to 7.2 when temperature was increased from 0 degrees C to 38 degrees C; (b)the apparent half-saturation constant increased from 28 mM at 0 degrees C to 65 mM at 38 degrees C; (c) chloride transport at body temperature is slower than predicted by other investigators by extrapolation from low-temperature results. Chloride transport increased only 200 times when temperature was raised from 0 degrees C to 38 degrees C, because the apparent activation energy decreased from 30 kcal mol(-1) to 20 kcal mol(-1) above a temperature of 15 degrees C; (d) a study of temperature dependence of the slower bromide self-exchange showed that a similar change of activation energy occurred around 25 degrees C. Both in the case of Cl(-) (15 degrees C) and in the case of Br(-) (25 degrees C), critical temperature was reached when the anion self-exchange had a turnover number of about 4x10(9) ions cell (-1)s(-1); (e) inhibition of chloride transport by DIDS (4,4’- diisothiocyano-stilbene-2,2’-disulfonate)revealed that the deflection persisted at 15 degrees C at partial inhibition (66 percent) presumably because DIDS inactivated 66 percent of the transport sites. It is suggested that a less temperature- dependent step of anion exchange becomes rate limiting at the temperature where a critical turnover number is reached.  相似文献   

6.
Thioltransferase in human red blood cells: kinetics and equilibrium   总被引:2,自引:0,他引:2  
Thioltransferase from human red blood cells (HRBC TTase), coupled to GSSG reductase, catalyzed glutathione (GSH)-dependent reduction of prototype substrates hydroxyethyl disulfide (HEDS) and sodium S-sulfocysteine as well as of other homo- and heterodisulfides, including the protein mixed disulfide albumin-S-S-cysteine. Whereas apparent KM values for the substrates varied over more than a 20-fold range, the Vmax values agreed quite closely, usually within less than a factor of 2, suggesting that initial interaction of oxidized substrate with enzyme is not rate determining. HRBC TTase was inactivated by iodoacetamide (IAA), and this was prevented by pretreatment with disulfides. The pH dependence of IAA inactivation gave a remarkably low apparent pKa of 3.5, which was independent of ionic strength (0.05-2 M). At pH 6, one radiolabeled carboxyamidomethyl moiety was bound to the enzyme after treatment with [14C]IAA. This unusual thiol reactivity suggests that the active-site cysteine moiety of the TTase may be involved in a hydrogen bond with a carboxylate moiety. In contrast, the pH dependence for GSH-dependent TTase catalysis of disulfide reduction displayed an inflection point near pH 8.0, also suggesting that the initial reaction of oxidized substrate with the active-site thiol is not involved in rate determination. Two substrate kinetic studies of HRBC TTase and rat liver TTase (e.g., [GSH] and [HEDS] varied independently) gave patterns of intersecting lines on double-reciprocal plots (1/v vs 1/S), indicating a sequential mechanism for the TTase reactions, rather than a ping-pong mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
Furosemide inhibition of chloride transport in human red blood cells   总被引:11,自引:9,他引:11       下载免费PDF全文
The chloride self-exchange flux across the human red cell membrane is rapidly and reversibly inhibited by 10(-4) M furosemide, a potent chloruretic agent. Furosemide reduces the chloride flux at all chloride concentrations and increases the cellular chloride concentration at which the flux is half-maximum. Kinetic analysis of the flux measurements made at several furosemide and chloride concentrations yields a pattern of mixed inhibition with a dissociation constant for the inhibitor-transport mechanism complex of 5 X 10(-5) M. From this pattern of inhibition and other observations, including that the percent inhibition is independent of pH (range 5.6-8.9), we conclude that the anionic form of furosemide interacts primarily with the chloride transport mechanism at a site separate from both the transport site and the halide-reactive modifier site.  相似文献   

10.
Active transport of lead by human red blood cells   总被引:1,自引:0,他引:1  
T J Simons 《FEBS letters》1984,172(2):250-254
Human red cells suspended in lead-citrate buffers (2.6 microM Pb2+) take up much less Pb than predicted from studies of equilibrium binding of Pb to haemolysates. Pb uptake is increased by ATP depletion, or by loading at 0 degrees C. Tracer studies with 203Pb indicate that the low uptake at 37 degrees C in the presence of substrate is not due to membrane impermeability to Pb. Cold-loaded cells extrude Pb against a concentration gradient at 37 degrees C when glucose is present. These results suggest that the cellular loading of Pb is dependent on the balance between an inward leak and an outward pump. The extrusion of Pb from the cells is possibly brought by the Ca pump.  相似文献   

11.
Depletion of energy stores of human red cells decreases the maximum transport capacity, Jm, for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in Km. Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in Jm. The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in Jm and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains.  相似文献   

12.
13.
The current study was designed to characterise K(+) transport in human fetal red blood cells, containing mainly haemoglobin F (HbF, and termed HbF cells), isolated from umbilical cords following normal parturition. Na(+)/K(+) pump activity was comparable to that in normal adult human red cells (which contain HbA, and are termed HbA cells). Passive (ouabain-resistant) K(+) transport was dominated by a bumetanide (10 microM)-resistant component, inhibited by [(dihydroxyindenyl)oxy]alkanoic acid (100 microM), calyculin A (100 nM) and Cl(-) removal, and stimulated by N-ethylmaleimide (1 mM) and staurosporine (2 microM) - all consistent with mediation via the K(+)-Cl(-) cotransporter (KCC). KCC activity in HbF cells was also O(2)-dependent and stimulated by swelling and urea, and showed a biphasic response to changes in external pH. Peak activity of KCC in HbF cells was about 3-fold that in HbA cells. These characteristics are qualitatively similar to those observed in HbA cells, notwithstanding the different conditions experienced by HbF cells in vivo, and the presence of HbF rather than HbA. KCC in HbF cells has a higher total capacity, but when measured at the ambient PO(2) of fetal blood it would be similar in magnitude to that in fully oxygenated HbA cells, and about that required to balance K(+) accumulation via the Na(+)/K(+) pump. These findings are relevant to the mechanism by which O(2) regulates membrane transporters in red blood cells, and to the strategy of promoting HbF synthesis as a therapy for patients with sickle cell disease.  相似文献   

14.
Urate transport in human erythrocytes were measured and compared to previous observations by other authors regarding inorganic anions, especially chloride. Conclusions wwere as follows: 1. Urate influx as a function of increasing concentrations showed saturation kinetics. 2. The effects of pH and of several passive anion transport inhibitors such as dinitrofluorobenzene, sodium salicylate, sodium benzoate and phenylbutazone suggest that urate and chloride are transported by different mechanisms. 3. Urate influx seems to depend on intracellular glycolysis. The results obtained on red blood cells after glycolysis inhibition agree with those obtained on ghosts where metabolism does not take place. 4. The large drop in urate influxes into erythrocytes in the presence of a glycolysis inhibitor and of a passive ion transport inhibitor seems to argue in favour of a dual urate transport mechanism, one for passive diffusion and the other connected with glycolysis. 5. The drop in the urate influx into ghosts in the absence of ATP suggests that the latter might intervene in urate transport by human red cell membranes.  相似文献   

15.
16.
17.
This paper describes the kinetics and stoichiometry of a tightly coupled Na-Li exchange transport system in human red cells. The system is inhibited by phloretin and furosemide but not by ouabain. Li influx by this system increases and saturates with increasing concentrations of external Li and internal Na and is inhibited competitively by external Na. Comparable functions relate Li efflux and Na efflux to internal and external Li and Na concentrations. Analysis of these relations yields the following values for the ion concentrations required to half-maximally activate the transport system: internal Na and Li 9.0 and 0.5 mM, respectively, external Na and Li 25 and 1.5 mM, respectively. The system performs a 1:1 exchange of Na and Li moving in opposite directions across the red cell membrane. We found no evidence for a simultaneous transport of more than one Na and Li by the system. The maximum transport rate of Na-dependent Li transport varied between 0.1 and 0.37 mmol/(liter of cells X h) in the red cells of the five normal male subjects studied. No significant variations between individual subjects were observed for bicarbonate-stimulated Li transport and for the residual Li fluxes which occur in the absence of bicarbonate and in the presence of ouabain plus phloretin.  相似文献   

18.
19.
The rates of glucose transport and of glycolysis and the expression of the glucose transporters GLUT-1 through GLUT-4 were measured in T47D human breast cancer cells that underwent differentiation by retinoic acid. Glucose transport was found to be the rate-limiting step of glycolysis in control and differentiated cells. The transporters GLUT-1, GLUT-3, and GLUT-4 were present in the cell membrane and in the cytoplasm, and GLUT-2 was present solely in the cytoplasm. Differentiation led to a reduction in GLUT-1 and to an increase in cytoplasmic GLUT-2 and GLUT-3 with no change in GLUT-4. Differentiation also caused a reduction in the maximal velocity of glucose transport by approximately 40% without affecting the Michaelis-Menten constant of glucose transport. These changes did not alter the steady-state concentration of the phosphate metabolites regulating cell energetics but increased the content of phospholipid breakdown phosphodiesters. In conclusion, differentiation of human breast cancer cells appears to be associated with decreased glycolysis by a mechanism that involves a reduction in GLUT-1 and a slowdown of glucose transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号