首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six rice genotypes showing susceptible and resistant reactions to brown planthopper (BPH), Nilaparvata lugens were studied for feeding‐induced changes in defence enzymes and pathogenesis‐related (PR) proteins. The high resistant genotypes PTB 33, ADT 45 and ASD 7 and moderately resistant genotypes CO 43 and KAU 1661 recorded the greater expression of defence enzymes peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, total phenol and β‐1,3 glucanase in response to N. lugens feeding at 1 day after infestation (DAI) compared with susceptible genotype TN1. The greater activity of chitinase was observed in resistant cultivars at 3 DAI and the activity was sustained for more than 1 week compared with susceptible TN1. In conclusion, the current study revealed that these defence enzymes and PR proteins might attribute to the resistance mechanisms in rice plants against BPH infestation.  相似文献   

2.
Abstract

The effect of Salicylic Acid (SA) in inducing resistance in groundnut plants against Alternaria alternata was investigated. Foliar application of SA at the concentration of 1 mM significantly reduced the leaf blight disease intensity and increased the pod yield under glasshouse conditions. Changes in the activities of phenylalanine ammonium lyase, chitinase β-1,3 glucanase and in phenolic content on groundnut after application of SA and inoculation with A. alternate were studied. In SA-treated leaves (plants) an increase in phenolic content was observed five days after challenge inoculation with A. alternata in groundnut plants pretreated with SA. There was a marked increase in chitinase and pathogen inoculation in SA-treated leaves. In chitinase, β-1,3 glucanase activities were observed in response to plants with an increase in SA treated leaves. Foliar applications of SA-induced in peroxidase and polyphenol oxidase activities were observed upon challenge inoculation with pathogen.  相似文献   

3.
Abstract

Rice blast is the leading fungal disease which is caused by Magnaporthe oryzae that contributes for the significant decline in the rice yield throughout the globe. There is a need for the understanding of biochemical changes in rice plant during blast infection for the development of novel disease control strategies. In the present study, we isolated M. oryzae from the local paddy fields and the fungal isolates (VCF and PON) were identified by ITS-PCR using genomic DNA samples. Further, we inoculated resistant (BR2655 and TUNGA) and susceptible (INTAN and HR12) rice cultivars with PON and VCF isolates. PON isolate showed relatively high virulence compared to VCF and standard MTCC fungal strains. Therefore, we evaluated the effect of PON on the total protein content and plant defence-related key enzymes (peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-glucosidase, chitinase and lipoxygenase) activities between 24- and 120-hour post-inoculation (hpi). The results demonstrated the decrease in total protein content in all the inoculated cultivars. In addition, we observed the variation in the activity of peroxidase, polyphenol oxidase, β-glucosidase, chitinase and lipoxygenase at different time points in all the tested rice plants compared to respective controls. However, no significant difference was observed in the phenylalanine ammonia lyase activity relative to its control. Taken together, this study emphasizes on the variation in the activities of plant defence enzymes in different plant cultivars against the tested fungal pathogen and also implementation of defence enzymes as biochemical markers for resistant breeding.  相似文献   

4.
The defence reactions of sorghum seedlings 7 days after inoculation with Fusarium thapsinum and F. proliferatum, and interactions with wounding and exposure to light were studied to determine whether responses to these fungi differed from those to abiotic stresses. In non‐wounded plants, inoculation with both fungi increased concentrations of anthocyanins and soluble phenolics and activities of peroxidase (POX), chitinase and β‐1,3‐glucanase in the roots, and increased β‐1,3‐glucanase activity in the mesocotyls. There was no effect of inoculation on phenylalanine ammonia‐lyase (PAL) activity. Wounding by itself increased anthocyanin content of mesocotyls. Wounding also had a variety of interactions with inoculation. Exposure to light had very little effect on any defence response measured. A time course experiment showed that induction of chitinase and β‐1,3‐glucanase occurred in less than 24 h after inoculation. POX activity increased 2 days after inoculation, followed by a transient increase in PAL activity. The content of anthocyanins and soluble phenolics in roots of inoculated seedlings increased gradually compared with controls over 6 days. The responses of sorghum seedlings to inoculation with F. thapsinum and F. proliferatum were similar to those found by other workers following challenge by necrotrophic pathogens and were different from those induced by wounding and exposure to light.  相似文献   

5.
The distribution of extracellular 1,3‐β‐glucanase secreted by Gaeumannomyces graminis var. tritici (Ggt) was investigated in situ in inoculated wheat roots by immunogold labelling and transmission electron microscopy. Antiserum was prepared by subcutaneously injecting rabbits with purified 1,3‐β‐glucanase secreted by the pathogenic fungus. A specific antibody of 1,3‐β‐glucanase, anti‐GluGgt, was purified and characterized. Double immunodiffusion tests revealed that the antiserum was specific for 1,3‐β‐glucanase of Ggt, but not for 1,3‐β‐glucanase from wheat plants. Native polyacrylamide gel electrophoresis of the purified and crude enzyme extract and immunoblotting showed that the antibody was monospecific for 1,3‐β‐glucanase in fungal extracellular protein populations. After incubation of ultrathin sections of pathogen‐infected wheat roots with anti‐1,3‐β‐glucanase antibody and the secondary antibody, deposition of gold particles occurred over hyphal cells and the host tissue. Hyphal cell walls and septa as well as membranous structures showed regular labelling with gold particles, while few gold particles were detected over the cytoplasm and other organelles such as mitochondria and vacuoles. In host tissues, cell walls in contact with the hyphae usually exhibited a few gold particles, whereas host cytoplasm and cell walls distant from the hyphae were free of labelling. Furthermore, over lignitubers in the infected host cells labelling with gold particles was detected. No gold particles were found over sections of non‐inoculated wheat roots. The results indicate that 1,3‐β‐glucanase secreted by Ggt may be involved in pathogenesis of the take‐all fungus through degradation of callose in postinfectionally formed cell wall appositions, such as lignitubers.  相似文献   

6.
Abstract

Azoxystrobin at three different concentrations, namely, 31.25, 62.50 and 125 g a.i. ha?1 mancozeb (1 kg ha?1) and Pseudomonas fluorescens (10 kg ha?1) were evaluated for their efficacy in inducing defense enzymes in tomato against Alternaria solani and Septoria lycopersici. The activity of defense enzymes peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), β-1, 3 glucanase, chitinase, catalase and defense-inducing chemicals (total phenols) was found to be increased in azoxystrobin and P. fluorescens-treated tomato plants. The activity of these defense enzymes and chemicals was higher in azoxystrobin (125 g a.i. ha?1) and P. fluorescens-treated tomato plants challenge inoculated with the pathogens compared to other treatments. Increased expression of specific isoforms of PO and PPO was also observed due to ISR induction.  相似文献   

7.
To understand mechanisms of disease resistance in pine trees, we took advantage of the fact that suspension cultured cells exhibit many of the defense responses that are characteristic of intact tissues. In this study, we measured constitutive and elicitor-induced levels of ethylene production, chitinase activity and glucanase activity in cells of loblolly pine (Pinus taeda L). Increased ethylene production was induced similarly by a live fungus (Ophiostoma minus Hedgc. H.P. Sydow) and chitosan, a general elicitor. Culture age, relative to the most recent transfer, affected the constitutive level of all defense responses. Culture age also had a pronounced effect on the ability of the cells to produce ethylene and cellular chitinase, but not on secreted chitinase, cellular glucanase, secreted glucanase, or lignification. In older cultures, elicitation induced a 4- to 10-fold increase in ethylene production and a 2-fold increase in cellular chitinase, secreted chitinase and cellular glucanase. Chitosan elicitation did not affect secreted glucanase. The overall regulation of the defense response in pine cells appears complex, but individual components of the response can be differentially induced in cell cultures under appropriate experimental conditions.  相似文献   

8.
Red root rot caused by Poria hypolateritia is a dreadful disease in tea plant due to sudden death of bushes. In response to fungal pathogen, variation in the defence-related enzymes was investigated. The infected tea root was undertaken to study about various defence-related and pathogen-related enzymes. The infected root, as a prime response to disease attack, was subjected to the analysis of phenolics, phenylalanine ammonia lyase, tyrosine ammonia lyase, peroxidase, polyphenol oxidase, catalase, chitinase, β-1,3-glucanase and protease were assayed. The results on assay of defence-related enzymes revealed that the activity was significantly higher in infected roots when compared with healthy roots. Phenolics were accumulated more in infected roots. The sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis further confirmed the presence of induced pathogenesis-related proteins in the infected root tissues. The activity of all enzymes was increased up to threefold amount when compared with normal ones. The accumulation of defence enzymes in plants revealed the virulence of root pathogen in stimulating induced systemic resistance of tea plants and phytopathogenicity causing pathogenesis. This study exemplify to recognise underlying processes in causing infection and to identify the existence of host–pathogen relationship.  相似文献   

9.
Chitinase (EC 3.2.1.14) activity was measured in roots of Allium prorrum L. (leek) during development of a vesicular-arbuscular mycorrhizal symbiosis with Glomus versiforme (Karst.) Berch. During the early stages of infection, between 10 and 20 d after inoculation, the specific activity of chitinase was higher in mycorrhizal roots than in the uninfected controls. However, 60–90 d after inoculation, when the symbiosis was fully established, the mycorrhizal roots contained much less chitinase than control roots. Chitinase was purified from A. porrum roots. An antiserum against beanleaf chitinase was found to cross-react specifically with chitinase in the extracts from non-mycorrhizal and mycorrhizal A. porrum roots. This antiserum was used for the immunocytochemical localization of the enzyme with fluorescent and gold-labelled probes. Chitinase was localized in the vacuoles and in the extracellular spaces of non-mycorrhizal and mycorrhizal roots. There was no immunolabelling on the fungal cell walls in the intercellular or the intracellular phases. It is concluded that the chitin in the fungal walls is inaccessible to plant chitinase. This casts doubts on the possible involvement of this hydrolase in the development of the mycorrhizal fungus. However, fungal penetration does appear to cause a typical defense response in the first stages that is later depressed.  相似文献   

10.
Abstract

Panama disease of banana (Musa spp) caused by the fungus Fusarium oxysporum f. sp. Cubense (FOC), is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Chemical control is not economically effective and is also hazardous to the environment and human health. Breeding for disease resistance is an alternative strategy, which leads to the development of resistance clones. Field evaluation is the most reliable method of screening for disease resistance, but it is demanding in terms of cost, manpower and space requirements. Another approach of screening hybrids at the sucker's stage (planting material) through biochemical markers has been found to be effective in early identification of resistant hybrids. The resistance mechanisms involving the role of phenol, PAL, oxidative enzymes like peroxidase (PO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase and PR-proteins like chitinase, β-1-3 glucanase were studied and they showed relatively higher activity in resistant hybrids than susceptible hybrids. Isozyme analysis of peroxidase (PO) and polyphenol oxidase (PPO) was also carried out in cultivars and hybrids, which revealed the induction of specific isoforms in the resistant hybrids upon challenge inoculation. This could be a useful tool for early identification of F. oxysporum f. sp. cubense resistance banana clones.  相似文献   

11.
A cell-wall fraction of the mycorrhizal fungus Amanita muscaria increased the chitinase activity in suspension-cultured cells of spruce (Picea abies (L.) Karst.) which is a frequent host of Amanita muscaria in nature. Chitinase activity was also increased in roots of spruce trees upon incubation with the fungal elicitor. Non-induced levels of chitinase activity in spruce were higher in suspension cells than in roots whereas the elicitorinduced increase of chitinase activity was higher in roots. Treatment of cells with hormones (auxins and cytokinin) resulted in a severalfold depression of enzyme activity. However, the chitinase activity of hormone-treated as well as hormone-free cells showed an elicitor-induced increase. Suspension cells of spruce secreted a large amount of enzyme into the medium. It is postulated that chitinases released from the host cells in an ectomycorrhizal system partly degrade the fungal cell walls, thus possibly facilitating the exchange of metabolites between the symbionts.  相似文献   

12.
Chitinase and β-1,3-glucanase activities were assayed in roots, stems and leaves of 12-day-old chickpea ( Cicer arietinum L.) plants. While glucanase activity was higher in roots than in the aerial parts of the plant, leaves had higher Chitinase activity. Both glucanase and chitinase activities were induced in roots and stems in response to wounding (excision into 1-cm pieces), with activity increasing 6 h after treatment, reaching a maximum between 24 and 48 h, and thereafter remaining nearly constant up to 72 h. Ethephon treatment also induced β-1,3-glucanase and chitinase activities in stems but not in roots. Both enzymes occurred in root and stem tissues as a complex mixture of isoenzymes. At least four different peaks with glucanase and chitinase activities could be resolved by gel filtration chromatography on Sephacryl S-200 and chromatofocusing on PBE 94 (pH 4–7). Following ammonium sulfate precipitation and ion exchange on CM- and DEAE-Trisacryl, three β-1,3-glucanase and chitinase fractions, referred to as basic, neutral and acidic, were separated on the basis of their chromatographic behaviour. Most of the total protein (75%) of stem extracts was found in the acidic fraction, whereas the major glucanase (53%) and chitinase (62%) activities were in the basic and neutral fractions, respectively. While wounding resulted in an increase in the neutral glucanase and chitinase activities, the activities of the acidic fractions were promoted by ethephon.  相似文献   

13.
Addition of insoluble mycelial walls of a fungus, Chaetomiumglobosum, stimulated the induction of chitinase and phenylalanineammonia-lyase (PAL), as well as the accumulation of phenolicacids in cultured carrot cells. Mycelial wall fragments solubilizedby chitinase treatment also elicited accumulation of phenolicacids. The induction of chitinase and PAL were highly dependenton the age of the carrot cell cultures, as are other defenseresponses, including phytoalexin production. (Received April 2, 1986; Accepted August 22, 1986)  相似文献   

14.
Colletotrichum gloeosporioides produced exo-pectin lyase and protease in a) liquid cultures with incorporated washed cell wall material from unripe or ripe avocado and b) autoclaved immature fruit. The activity of exo-pectin lyase and protease produced in liquid cultures incorporating washed cell walls from immature fruits was almost the same as when washed cell walls from ripe fruits were incorporated. Ripe fruit tissue rotted by the fungus contained exo-pectin lyase, endo-polygalacturonase (endo-PG) and protease. The endo-PG was found to be endogenous to avocado fruit, and had a pH optimum of 5.5. The pH optima of exo-pectin lyase and protease were 8.5 and 7.5 respectively in all three enzyme preparations. All these enzyme preparations completely macerated avocado fruit tissue discs in vitro in less than 3 h of incubation but not potato tuber discs. Neither immature nor ripe fruit contained substances, proteinaceous or otherwise, which could inhibit the exo-pectin lyase or protease activity of these preparations. The results indicated that C. gloeosporioides possesses sufficient enzyme potential to invade cell walls of unripe fruit and that the fruit tissue does not have a mechanism to inactivate such enzymes.  相似文献   

15.
The effects of the endophytic fungus Gilmaniella sp. and its elicitor on the defense and metabolic responses of host plants Atractylodes lancea were investigated, in order to understand how to utilize endophytic fungi and their elicitor resources better. The results showed that the promotion effect of the fungus on the growth of host plantlets was much better than that of its elicitor. Both fungus and elicitor enhanced defense-related enzyme activities. In fungus-inoculated groups, phenylalanine ammonia lyase and polyphenol oxidase activities increased slowly, and reached a maximum level during the later stages, whereas peroxidase activity peaked in the first few days. Additionally, the activities of chitinase and β-1,3-glucanase were significantly higher than those of the control plants. In elicitor-treated groups, however, most of the enzymes were activated during the early stage, and their highest levels were generally lower than those of the fungus-inoculated groups. Compared with the elicitor, fungal infection improved the photosynthetic rate of the host, and increased carbohydrate levels as well as chlorophyll content in host leaves. The total content of the four main components of volatile oil was also increased in elicitor-treated groups, but there was no particular pattern in this increase. Meanwhile, in the fungus-inoculated groups, the content of atractylone significantly increased with time, while the content of β-eudesmol decreased. These results indicated that fungal elicitor could substantially improve the total content of volatile oil, while the fungus could more effectively enhance the quality of herbal medicines.  相似文献   

16.
The effect of chitosan (0.1 mol/L) combined with sodium silicate (100 mmol/L) treatment on Alternaria rot caused by Alternaria alternata in postharvest jujube fruit (Ziziphus jujuba Mill. cv. Dongzao) was studied. The results showed that chitosan combined with sodium silicate treatment significantly reduced the lesion diameter, decay incidence, red index and weight loss of jujube fruit compared with control samples. Combining treatment increased the ascorbic acid, flavonoids, total phenolic compounds and lignin content. The level of superoxide anion () and hydrogen peroxide of treated samples was also increased compared with the control samples. Meanwhile, the activities of phenylalanine ammonia lyase, polyphenol oxidase, superoxide dismutase, peroxidase, chitinase and β‐1,3‐glucanase were also accumulated in treated jujube samples, while the activity of catalase markedly decreased. These results indicated that chitosan combined with sodium silicate treatment could induce the disease resistance of postharvest jujube. Therefore, coating postharvest jujube using chitosan combined with sodium silicate could promise as a novel method for preventing the disease infection of postharvest jujube.  相似文献   

17.
The biochemical basis of resistance in castor (Ricinus communis L.) to Fusarium wilt, caused by the pathogen Fusarium oxysporum f. sp. ricini, was investigated. Induction of plant defence against pathogen attack is regulated by a complex network of different signals. Thus changes in various biochemical defenses including antioxidant enzymes, phenolic compounds and pathogenesis related (PR) proteins were investigated in the roots of resistant and susceptible genotypes of castor at 0, 24, 48 and 72 h.a.i. Infection by F. oxysporum significantly increased the superoxide dismutase (SOD) and peroxidase (POX) activities in the roots of susceptible genotypes, while the catalase (CAT) activities were appreciably higher in the roots of resistant genotypes at different stages. Constitutive levels of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) were higher in the resistant genotypes. Also, the activities of phenylalanine ammonia lyase (PAL) and β 1, 3 glucanase significantly increased in the roots of the resistant genotypes after infections. The rate of increment of thiobarbituric acid reactive substances (TBARS) was higher in resistant genotypes after infection. Analysis of isozyme banding pattern of SOD, POX, PPO and esterase on native PAGE electrophoresis revealed that interaction between plant and fungi invoked various isozymes at 48 h of infection. SOD 3 was observed only in resistant genotypes at 24 h.a.i. except Geeta. Similarly induction of POX 5 was observed only in resistant genotypes at 48 h of infection, though the intensity of POX 5 was very less.  相似文献   

18.
The biochemical nature of the interaction between the antagonistic fungus Trichoderma harzianum strain T-203 and cucumber roots was studied during the early stages of root colonization by the fungus. Pathogenesis related (PR) proteins of the plant and enzyme activity of the fungus following the penetration and colonization of the roots by T. harzianum were explored up to 72 h post-inoculation. Scanning electron microscopy (SEM) revealed typical fungal structures previously associated with mycoparasitic interactions of T. harzianum strains during biological control. These included hyphal coiling and appressoria formation. Compared to untreated control, cucumber roots treated with T. harzianum T-203 exhibited higher activities of chitinase (EC 3.2.1.14), β-1,3-glucanase (EC 3.2.1.6), cellulase (EC 3.2.1.4) and peroxidase (EC 1.11.1.7), up to 72 h post-inoculation. Plants treated with a chemical inducer of the plant defence response, 2,6-dichloroisonicotinic acid (INA) displayed responses that were similar but not identical to those of plants inoculated with T. harzianum. In vivo staining of chitinase activity in fresh root sections allowed the localization of the activity in roots treated with either T. harzianum T-203 or INA. The formation of fluorescent products mainly in intercellular spaces of the induced roots provided evidence for the involvement of the plant defence system. In addition to its well-recognized mycoparasitic nature, it is suggested that Trichoderma’s association with roots reduce root disease through activation of the plant’s defence response.  相似文献   

19.
为了探讨绿木霉与褐环乳牛肝菌的互作机理,在体外共培养条件下,采用光学显微镜和扫描电镜对二者生长重叠部分进行体外观察,发现二者生长无相互影响,在营养生长方面几乎不存在竞争关系。为进一步揭示绿木霉与褐环乳牛肝菌的互作机制,采用体外诱导和生物化学等方法,向褐环乳牛肝菌发酵液中加入灭活绿木霉菌丝诱导物,每天对发酵液中的多酚氧化酶、几丁质酶、漆酶和中性蛋白酶等酶活性进行检测。试验结果表明,绿木霉诱导褐环乳牛肝菌产漆酶能力最强;在整个共培养过程中,多酚氧化酶和漆酶活力始终处于较高水平,在诱导培养第6天,这两种酶活性升至最高,分别达到25.2U/mL和1 580U/mL;灭活绿木霉菌丝对褐环乳牛肝菌几丁质酶的诱导具有“瞬时性”,在诱导培养第2天即检测到较高的几丁质酶活性;中性蛋白酶的活性变化基本上呈先上升后下降的规律,且能增大褐环乳牛肝菌中性蛋白酶的固有产量,形成“叠加效果”。综上所述,绿木霉对褐环乳牛肝菌几乎不存在营养竞争关系,但其灭活菌丝体对褐环乳牛肝菌发酵液的多种酶活性存在诱导增效作用。  相似文献   

20.
Ramamoorthy  V.  Raguchander  T.  Samiyappan  R. 《Plant and Soil》2002,239(1):55-68
Pseudomonas fluorescens isolate Pf1 was found to protect tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Induction of defense proteins and chemicals by P. fluorescens isolate Pf1 against challenge inoculation with F. oxysporum f. sp. lycopersici in tomato was studied. Phenolics were found to accumulate in bacterized tomato root tissues challenged with F. oxysporum f. sp. lycopersici at one day after pathogen challenge. The accumulation of phenolics reached maximum at the 5th day after pathogen challenge. In pathogen-inoculated plants, the accumulation started at the 2nd day and drastically decreased 4 days after the pathogen inoculation. Activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) increased in bacterized tomato root tissues challenged with the pathogen at one day after pathogen challenge and activities of PAL and PO reached maximum at the 4th day while activity of PPO reached maximum at the 5th day after challenge inoculation. Isoform analysis revealed that a unique PPO1 isoform was induced and PO1 and PPO2 isoforms were expressed at higher levels in bacterized tomato root tissues challenge inoculated with the pathogen. Similarly, -1,3 glucanase, chitinase and thaumatin-like proteins (TLP) were induced to accumulate at higher levels at 3-5 days of challenge inoculation in bacterized plants. Western blot analysis showed that chitinase isoform Chi2 with a molecular weight of 46 kDa was newly induced due to P. fluorescens isolate Pf1 treatment challenged with the pathogen. TLP isoform with molecular weight of 33 kDa was induced not only in P. fluorescens isolate Pf1-treated root tissues challenged with the pathogen but also in roots treated with P. fluorescens isolate Pf1 alone and roots inoculated with the pathogen. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restriction of invasion of F. oxysporum f. sp. lycopersici in tomato roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号