共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhythmic activity of single cells or multicellular networks is a common feature of all organisms. The oscillatory activity is characterized by time intervals of several seconds up to many hours. Cellular rhythms govern the beating of the heart, the swimming behavior of sperm, cycles of sleep and wakefulness, breathing, and the release of hormones. Many neurons in the brain and cardiac cells are characterized by endogenous rhythmic activity, which relies on a complex interplay between several distinct ion channels. In particular, one type of ion channel plays a prominent role in the control of rhythmic electrical activity since it determines the frequency of the oscillations. The activity of the channels is thus setting the "pace" of the oscillations; therefore, these channels are often referred to as "pacemaker" channels. Despite their obvious important physiological function, it was not until recently that genes encoding pacemaker channels have been identified. Because both hyperpolarization and cyclic nucleotides are key elements that control their activity, pacemaker channels have now been designated hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. The molecular identification of the channels and the upcoming studies on their properties in heterologous systems will certainly enhance our understanding of "pacemaking" in physiological systems. This review gives a brief insight into the physiological importance of these channels and sums up what we have learned since the first cloning of genes succeeded (for recent reviews, see also Clapham 1998; Luthi and McCormick 1998a; Biel et al. 1999; Ludwig, Zong, Hofmann, et al. 1999; Santoro and Tibbs 1999). 相似文献
2.
3.
4.
Dorsal root ganglion(DRG)neurons have peripheral terminals in skin,muscle,and other peripheral tissues,andcentral terminals 相似文献
5.
Dorsal root ganglion DRG neurons have peripheral ter-minals in skin, muscle, and other peripheral tissues, andcentral terminals in the spinal cord dorsal horn. 相似文献
6.
Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate 总被引:9,自引:0,他引:9
Hyperpolarization-activated cation currents (I(h)) are key determinants of repetitive electrical activity in heart and nerve cells. The bradycardic agent ZD7288 is a selective blocker of these currents. We studied the mechanism for ZD7288 blockade of cloned I(h) channels in excised inside-out patches. ZD7288 blockade of the mammalian mHCN1 channel appeared to require opening of the channel, but strong hyperpolarization disfavored blockade. The steepness of this voltage-dependent effect (an apparent valence of approximately 4) makes it unlikely to arise solely from a direct effect of voltage on blocker binding. Instead, it probably indicates a differential affinity of the blocker for different channel conformations. Similar properties were seen for ZD7288 blockade of the sea urchin homologue of I(h) channels (SPIH), but some of the blockade was irreversible. To explore the molecular basis for the difference in reversibility, we constructed chimeric channels from mHCN1 and SPIH and localized the structural determinant for the reversibility to three residues in the S6 region likely to line the pore. Using a triple point mutant in S6, we also revealed the trapping of ZD7288 by the closing of the channel. Overall, the observations led us to hypothesize that the residues responsible for ZD7288 block of I(h) channels are located in the pore lining, and are guarded by an intracellular activation gate of the channel. 相似文献
7.
Summary The Ca2+-activated nonselective cation channel in mouse pancreatic acini has been studied with the help of patch-clamp single-channel current recording in both the cell-attached conformation and in excised inside-out membrane patches. In intact resting mouse pancreatic acinar cells no unitary activity was observed. Adding saponin to the bath solution to disrupt the plasma membrane (apart from the isolated patch membrane from which current recording was made) evoked unitary inward current steps when the free ionized Ca2+ concentration in the bath ([Ca2+]
i
) was 5×10–8
m or above. When an electrically isolated patch membrane was excised and the internal aspects of the plasma membrane were exposed to the bath solution, channel activation could be obtained when [Ca2+]
i
was 10–7
m or above. However, with the passage of time the total inward current declined and about 1 min after excision no unitary current steps could be observed. At this stage Ca2+ in micromolar concentration was needed to open the channels and several hundred micromoles of Ca2+ per liter were required for maximal channel activation. Our results indicate that the Ca2+-activated nonselective cation channel is more sensitive to internal Ca2+ than hitherto understood and that it may therefore play a role under physiological conditions in intact cells. 相似文献
8.
Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development 总被引:5,自引:0,他引:5
HCN4 is a hyperpolarization-activated nucleotide-gated cation channel involved in the generation of the I(f) current that drives cardiac pacemaker activity. Previous studies have demonstrated that HCN4 is highly expressed in a restricted manner in adult sinoatrial (SA) node [Eur. J. Biochem. 268 (2001) 1646]. However, its developmental expression pattern is unknown. We have examined expression of HCN4 mRNA during mouse heart development. HCN4 mRNA was first detected in the cardiac crescent at embryonic day (ED) 7.5. At ED 8 it was symmetrically located in the most caudal portion of the heart tube, the sinus venosus where pacemaker activity has previously been reported [Am. J. Physiol. 212 (1967) 407]. With further development, HCN4 expression became asymmetrically distributed, occupying the dorsal wall of the right atria, and was progressively restricted to the junction of the right atrial appendage and the superior vena cava. The site of HCN4 expression in late embryonic heart coincided with the location of the SA node in postnatal and adult heart [Cardiovasc. Res. 52 (2001) 51]. Our results suggest that HCN4 may be a unique marker of the developing SA node. 相似文献
9.
Activation of nonselective cation channels by physiological cholecystokinin concentrations in mouse pancreatic acinar cells. 总被引:1,自引:0,他引:1 下载免费PDF全文
The activation of the nonselective cation channels in mouse pancreatic acinar cells has been assessed at low agonist concentrations using patch-clamp whole cell, cell-attached patch, and isolated inside-out patch recordings. Application of acetylcholine (ACh) (25-1,000 nM) and cholecystokinin (CCK) (2-10 pM) evoked oscillatory responses in both cation and chloride currents measured in whole cell experiments. In cell-attached patch experiments we demonstrate CCK and ACh evoked opening of single 25-pS cation channels in the basolateral membrane. Therefore, at least a component of the whole cell cation current is due to activation of cation channels in the basolateral acinar cell membrane. To further investigate the reported sensitivity of the cation channel to intracellular ATP and calcium we used excised inside-out patches. Micromolar Ca2+ concentrations were required for significant channel activation. Application of ATP and ADP to the intracellular surface of the patch blocked channel opening at concentrations between 0.2 and 4 mM. The nonmetabolizable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP, 0.2-2 mM), also effectively blocked channel opening. The subsequent removal of ATP caused a transient increase in channel activity not seen with the removal of ADP or AMP-PNP. Patches isolated into solutions containing 2 mM ATP showed channel activation at micromolar Ca2+ concentrations. Our results show that ATP has two separate effects. The continuous presence of the nucleotide is required for operation of the cation channels and this action seems to depend on ATP hydrolysis. ATP can also close the channel and this effect can be demonstrated in excised inside-out patches when ATP is added to the bath after a period of exposure to an ATP-free solution. This action does not require ATP hydrolysis. Under physiological conditions hormonal stimulation can open the nonselective cation channels and this can be explained by the rise in the intracellular free Ca2+ concentration. 相似文献
10.
Nonconfluent fibroblasts are relatively depolarized when compared with confluent fibroblasts, and transient hyperpolarizations result from a range of external stimuli as well as internal cellular activities. This electrical activity ceases, along with growth and mitogenic activity, when the cells become confluent. A calcium-activated potassium conductance is thought to be responsible for these hyperpolarizations, but in human fibroblasts the large calcium-activated potassium channel is not stretch-activated. We report here the identification of single stretch-activated cation channels in human fibroblasts, using the cell-attached and inside-out patch clamp techniques. The most prominent channel had a conductance of approximately 60 pS (picoSeimens) in 140 mM potassium and was permeable to potassium and sodium. The channel showed significant adaptation of activity when stretch was maintained over a period of several seconds, but a static component persisted for much longer periods. Higher conductance channels were also observed in a few excised patches. 相似文献
11.
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Like the related depolarization-activated K+ channels (Kv channels), HCN channels use an intracellular activation gate to regulate access to an inner cavity, lined by the S6 transmembrane regions, which leads to the selectivity filter near the extracellular surface. Here we describe two types of metal interactions with substituted cysteines in the S6, which alter the voltage-controlled movements of the gate. At one position (L466), substitution of cysteine in all four subunits allows Cd2+ ions at nanomolar concentration to stabilize the open state (a "lock-open" effect). This effect depends on native histidines at a nearby position (H462); the lock-open effect can be abolished by changing the histidines to tyrosines, or enhanced by changing them to cysteines. Unlike a similar effect in Kv channels, this effect depends on a Cd2+ bridge between 462 and 466 in the same subunit. Cysteine substitution at another position (Q468) produces two effects of Cd2+: both a lock-open effect and a dramatic slowing of channel activation-a "lock-closed" effect. The two effects can be separated, because the lock-open effect depends on the histidine at position 462. The novel lock-closed effect results from stabilization of the closed state by the binding of up to four Cd2+ ions. During the opening conformational change, the S6 apparently moves from one position in which the 468C cysteines can bind four Cd2+ ions, possibly as a cluster of cysteines and cadmium ions near the central axis of the pore, to another position (or flexible range of positions) where either 466C or 468C can bind Cd2+ in association with the histidine at 462. 相似文献
12.
Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel. 总被引:8,自引:0,他引:8 下载免费PDF全文
Brad S Rothberg Ki Soon Shin Prashant S Phale Gary Yellen 《The Journal of general physiology》2002,119(1):83-91
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is opened (Shin, K.S., B.S. Rothberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101). However, the ZD7288 molecule is larger than the Na(+) or K(+) ions that flow through the open channel. In the present study, we sought to resolve whether the voltage gate at the intracellular entrance to the pore for ZD7288 also can be a gate for permeant ions in HCN channels. Single residues in the putative pore-lining S6 region of an HCN channel (cloned from sea urchin; spHCN) were substituted with cysteines, and the mutants were probed with Cd(2+) applied to the intracellular side of the channel. One mutant, T464C, displayed rapid irreversible block when Cd(2+) was applied to opened channels, with an apparent blocking rate of approximately 3 x 10(5) M(-1)s(-1). The blocking rate was decreased for channels held at more depolarized voltages that close the channels, which is consistent with the Cd(2+) access to this residue being gated from the intracellular side of the channel. 464C channels could be recovered from Cd(2+) inhibition in the presence of a dithiol applied to the intracellular side. The rate of this recovery also was reduced when channels were held at depolarized voltages. Finally, Cd(2+) could be trapped inside channels that were composed of WT/464C tandem-linked subunits, which could otherwise recover spontaneously from Cd(2+) inhibition. Thus, Cd(2+) escape is also gated at the intracellular side of the channel. Together, these results are consistent with a voltage-controlled structure at the intracellular side of the spHCN channel that can gate the flow of cations through the pore. 相似文献
13.
Characteristics of hyperpolarization-activated cation currents in portal vein smooth muscle cells 总被引:6,自引:0,他引:6
Voltage-clamp studies offreshly isolated smooth muscle cells from rabbit portal veinrevealed the existence of a time-dependent cation current evoked bymembrane hyperpolarization (termed Ih). Both therate of activation and the amplitude of Ih wereenhanced by membrane hyperpolarization. Half-maximal activation ofIh was about 105 mV with conventional wholecell and 80 mV when the perforated patch technique was used. Incurrent clamp, injection of hyperpolarizing current produced a markeddepolarizing "sag" followed by rebound depolarization. Activationof Ih was augmented by an increase in theextracellular K+ concentration and was blocked rapidly byexternally applied Cs+ (1-5 mM). The bradycardic agentZD-7288 (10 µM), a selective inhibitor of Ih,produced a characteristically slow inhibition of the portal veinIh. The depolarizing sag recorded in current clamp was also abolished by application of 5 mM Cs+.Cs+ significantly decreased the frequency of spontaneouscontractions in both whole rat portal vein and rabbit portal veinsegments. Multiplex RT-PCR of rabbit portal vein myocytes using primers derived from existing genes for hyperpolarization-activated cation channels (HCN1-4) revealed the existence of cDNA clonescorresponding to HCN2, 3, and 4. The present study shows that portalvein myocytes contain genes shown to encode forhyperpolarization-activated channels and exhibit an endogenous currentwith characteristics similar to Ih in other celltypes. This conductance appears to determine, in part, the rhythmicityof this vessel. 相似文献
14.
Masahisa Shimada Takashi Kihara Masahito Watanabe Kiyohisa Kurimoto 《Neurochemical research》1977,2(6):595-603
After rapid inactivation of the enzymes responsible for glucose metabolism by microwave irradiation, concentrations of glucose in 20 regions of the mouse brain were estimated with combined gas chromatography-mass spectrometry (GC-MS). The highest concentrations of glucose were found in the periventricular nuclei of the hypothalamus and nucleus preopticus (P<0.05). The septum and nucleus amygdaloideus showed significantly higher glucose concentration compared with the cerebral neocortex, olfactory bulb, corpus striatum, cingulum, fornix, colliculus inferior, cerebellar cortex, corpus geniculatum laterale, substantia nigra, and nucleus ruber (P<0.05). The glucose concentration in the substantia nigra and nucleus ruber was significantly lower than in the other regions (P<0.01). 相似文献
15.
Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node 总被引:22,自引:0,他引:22
Ishii TM Takano M Xie LH Noma A Ohmori H 《The Journal of biological chemistry》1999,274(18):12835-12839
We cloned a cDNA (HAC4) that encodes the hyperpolarization-activated cation channel (If or Ih) by screening a rabbit sinoatrial (SA) node cDNA library using a fragment of rat brain If cDNA. HAC4 is composed of 1150 amino acid residues, and its cytoplasmic N- and C-terminal regions are longer than those of HAC1-3. The transmembrane region of HAC4 was most homologous to partially cloned mouse If BCNG-3 (96%), whereas the C-terminal region of HAC4 showed low homology to all HAC family members so far cloned. Northern blotting revealed that HAC4 mRNA was the most highly expressed in the SA node among the rabbit cardiac tissues examined. The electrophysiological properties of HAC4 were examined using the whole cell patch-clamp technique. In COS-7 cells transfected with HAC4 cDNA, hyperpolarizing voltage steps activated slowly developing inward currents. The half-maximal activation was obtained at -87.2 +/- 2.8 mV under control conditions and at -64.4 +/- 2.6 mV in the presence of intracellular 0.3 mM cAMP. The reversal potential was -34.2 +/- 0.9 mV in 140 mM Na+o and 5 mM K+o versus 10 mM Na+i and 145 mM K+i. These results indicate that HAC4 forms If in rabbit heart SA node. 相似文献
16.
Myelin was isolated from the brains of mice 15, 20, 30, and 60 days after birth. The total amount of basic protein present in the isolated myelin was determined by radioimmunoassay. The 4 myelin basic proteins, with molecular weights of 21,500, 18,500, 17,000 and 14,000, were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and their relative amounts were determined densitometrically. The absolute amount of each of the basic proteins was calculated from its relative amount on the gel and from the total amount of myelin basic protein in the sample as determined by radioimmunoassay. The results show that between 10 and 30 days after birth each protein accumulates at a characteristic rate so that the molar ratios among the 4 basic proteins are (in descending order according to their molecular weights) 1:5:2:10 during this period. Between 30 and 60 days after birth the 14 K and 18.5 K proteins continue to accumulate at reduced rates while the 21.5 K and 17 K proteins begin to disappear from the myelin membrane; 60 days after birth the molar ratios among the 4 basic proteins are 1:10:3.5:35. These developmental patterns of accumulation are discussed in relation to the possible role of each of the 4 myelin basic proteins in myelination. 相似文献
17.
I Brunk I Pahner U Maier B Jenner R W Veh B Nürnberg G Ahnert-Hilger 《European journal of cell biology》1999,78(5):311-322
Heterotrimeric G proteins play central roles in signal transduction of neurons and other cells. The variety of their alpha-, beta-, and gamma-subunits allows numerous combinations thereby confering specificity to receptor-G-protein-effector interactions. Using antisera against individual G-protein beta-subunits we here present a regional and subcellular distribution of Gbeta1, Gbeta2, and Gbeta5 in rat brain. Immunocytochemical specificity of the subtype-specific antisera is revealed in Sf9 cells infected with various G-protein beta-subunits. Since Gbeta-subunits together with a G-protein gamma-subunit affect signal cascades we include a distribution of the neuron-specific Ggamma2- and Ggamma3-subunits in selected brain areas. Gbeta1, Gbeta2, and Gbeta5 are preferentially distributed in the neuropil of hippocampus, cerebellum and spinal cord. Gbeta2 is highly concentrated in the mossy fibres of dentate gyrus neurons ending in the stratum lucidum of hippocampal CA3-area. High amounts of Gbeta2 also occur in interneurons innervating spinal cord alpha-motoneurons. Gbeta5 is differentially distributed in all brain areas studied. It is found in the pyramidal cells of hippocampal CA1-CA3 as well as in the granule cell layer of dentate gyrus and in some interneurons. In the spinal cord Gbeta5 in contrast to Gbeta2 concentrates around alpha-motoneurons. In cultivated mouse hippocampal and hypothalamic neurons Gbeta2 and Gbeta5 are found in different subcellular compartments. Whereas Gbeta5 is restricted to the perikarya, Gbeta2 is also found in processes and synaptic contacts where it partially colocalizes with the synaptic vesicle protein synaptobrevin. An antiserum recognizing Ggamma2 and Ggamma3 reveals that these subunits are less expressed in hippocampus and cerebellum. Presumably this antiserum specifically recognizes Ggamma2 and Ggamma3 in combinations with certain G alphas and/or Gbetas. The widespread but regionally and cellularly rather different distribution of Gbeta- and Ggamma2/3-subunits suggests that region-specific combinations of G-protein subunits mediate signal transduction in the central nervous system. The different subcellular distribution of Gbeta-subunits in cultivated neurons reflects that observed in tissue where Gbeta5 and Gbeta2 associate preferentially with the perikarya and the neuropil, respectively, and suggests an additional association of Gbeta2 with secretory vesicles. 相似文献
18.
L C Schlichter 《Canadian journal of physiology and pharmacology》1992,70(2):247-258
Nonselective cation channels were found in single channel recordings from cell-attached patches on human T lymphocytes. These channels were active under conditions that should lead to cell swelling (hypotonic bath solutions with NaCl or KCl); however, a definite dependence of activity on cell swelling has not been proven. Under these conditions similar channels were found in 20 of 23 patches from 11 different blood donors. The current-voltage relation was approximately linear for outward current (11-14 pS) and inwardly rectifying (to 23 pS) when the intact cells were depolarized with high KCl in the bath. The voltage dependence of channel activity is consistent with closing at hyperpolarized membrane potentials (Vm less than or equal to -50 mV) and block of open channels at strongly depolarized membrane potentials (Vm greater than 0 mV). Reversal potentials under all ionic gradients tested are consistent with a channel that is poorly selective between Na+ and K+ ions. Active channels in cell-attached patches were rapidly blocked by bath addition of the membrane-permeant inhibitor quinine. Channels that were active in cell-attached became quiescent after patch excision; however, two patches remained active long enough to obtain current-voltage relations. These were linear with a slope conductance for outward current of 8-11 pS. Because of the clustering of single-channel openings, detailed voltage dependence of kinetics and probability of opening were not studied. 相似文献
19.
Iron is crucial for a variety of cellular functions in neuronal cells. Neuronal iron uptake is reflected in a robust and consistent expression of transferrin receptors and divalent metal transporter 1 (DMT 1). Conversely, the mechanisms by which neurons neutralize and possibly excrete iron are less clear. Studies indicate that neurons express ferroportin which could reflect a mechanism for iron export. We mapped the distribution of ferroportin in the adult mouse brain using an antibody prepared from a peptide representing amino acid sequences 223–303 of mouse ferroportin. The antibody specifically detected ferroportin in brain homogenates, whereas homogenates of cultured endothelial cells were devoid of immunoreactivity. In brain sections, ferroportin was confined to neuronal cell bodies and peripheral processes of cerebral cortex, hippocampus, thalamus, brain stem, and cerebellum. In brain stem ferroportin-labeling was particularly high in neurons of cranial nerve nuclei and reticular formation. Ferroportin was hardly detectable in striatum, pallidum, or hypothalamus. Among non-neuronal cells, ferroportin was detected in oligodendrocytes and choroid plexus epithelial cells. A comparison with previous studies on the distribution of transferrin receptors in neurons shows that many neuronal pools coincide with those expressing ferroportin. The data therefore indicate that neuronal iron homeostasis consists of a delicate balance between transferrin receptor-mediated uptake of iron-transferrin and ferroportin-related iron excretion. The findings also suggest a particular high turnover of iron in neuronal regions, such as habenula, hippocampus, reticular formation and cerebellum, as several neurons in these regions exhibit a prominent co-expression of transferrin receptors and ferroportin. 相似文献