首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas putida Idaho utilizes toluene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, and 3-ethyltoluene as growth substrates when these hydrocarbons are provided in a two-phase system at 5 to 50% (vol/vol). Growth also occurs on Luria-Bertani medium in the presence of a wide range of organic solvents. The ability of the organism to grow in the presence of organic solvents is correlated with the logarithm of the octanol-water partition coefficient, with dimethyl-phthalate (log P(OCT) = 2.3) being the most polar solvent tolerated. During growth with p-xylene (20% [vol/vol]), there was an initial lag period accompanied by cell death, which was followed by a period of exponential growth. The stationary phase of growth was characterized by a dramatic decrease in cell viability, although cell dry weight and turbidity measurements slowly increased. Electron micrographs revealed that during growth in the presence of p-xylene, the outer cell membrane becomes convoluted and membrane fragments are shed into the culture medium. At the same time, the cytoplasmic membrane invaginates, forming vesicles, and becomes disorganized. Electron-dense intracellular inclusions were observed in cells grown with p-xylene (20% [vol/vol]) and p-xylene vapors, which are not present in cells grown with succinate. Attempts to demonstrate the presence of plasmid DNA in P. putida Idaho were negative. However, polarographic studies indicated that the organism utilizes the same pathway for the degradation of toluene, m-xylene, and p-xylene as that used by P. putida mt-2 which contains the TOL plasmid pWWO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pseudomonas putida DOT-T1 was isolated after enrichment on minimal medium with 1% (vol/vol) toluene as the sole C source. The strain was able to grow in the presence of 90% (vol/vol) toluene and was tolerant to organic solvents whose log P(ow) (octanol/water partition coefficient) was higher than 2.3. Solvent tolerance was inducible, as bacteria grown in the absence of toluene required an adaptation period before growth restarted. Mg2+ ions in the culture medium improved solvent tolerance. Electron micrographs showed that cells growing on high concentrations of toluene exhibited a wider periplasmic space than cells growing in the absence of toluene and preserved the outer membrane integrity. Polarographic studies and the accumulation of pathway intermediates showed that the strain used the toluene-4-monooxygenase pathway to catabolyze toluene. Although the strain also thrived in high concentrations of m- and p-xylene, these hydrocarbons could not be used as the sole C source for growth. The catabolic potential of the isolate was expanded to include m- and p-xylene and related hydrocarbons by transfer of the TOL plasmid pWW0-Km.  相似文献   

3.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

4.
Pseudocumene (1,2,4-trimethylbenzene) and 3-ethyltoluene were found to serve as growth substrates for Pseudomonas putida (arvilla) mt-2, in addition to toluene, m-xylene, and p-xylene as previously described. Similar observations were made with several additional P. putida strains also capable of growth with toluene and the xylenes. Additional substrates which supported the growth of these organisms included 3,4-dimethylbenzyl alcohol, 3,4-dimethylbenzoate, and 3-ethylbenzoate. P. putida mt-2 cells grown either with toluene or pseudocumene rapidly oxidized toluene, pseudocumene, and 3-ethyltoluene as well as 3,4-dimethylbenzoate, 3-ethylbenzoate, 3,4-dimethylcatechol, and 3-ethylcatechol. Cell extracts from similarly grown P. putida mt-2 cells catalyzed a meta fission of 3,4-dimethylcatechol and 3-ethylcatechol to compounds having the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate and 2-hydroxy-6-ox-2,4-octadienoate, respectively. The further metabolism of these intermediates was shown to be independent of oxidized nicotinamide adenine dinucleotide (NAD+) and resulted in the formation of essentially equimolar amounts of pyruvate, indicating that each ring fission product was degraded via the hydrolytic branch of the meta fission pathway. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of a mutant, which when grown with succinate in the presence of pseudocumene or 3-ethyltoluene accumulated 3,4-dimethylcatechol or 3-ethylcatechol. Cells unable to utilize toluene, m-xylene, and p-xylene, obtained by growth in benzoate, also lost the ability to utilize pseudocumene and 3-ethyltoluene. The ability to utilize these substrates could be reacquired by incubation with a leucine auxotroph otherwise able to grow on all of the aromatic substrates.  相似文献   

5.
A strain of Pseudomonas putida (TMB) was found to resemble P. putida mt-2 (PaW1) in its ability to degrade 1,2,4-trimethylbenzene, toluene, m-xylene, and p-xylene via oxidation of a methyl substituent and reaction of the meta fission pathway, but a different regulatory model is suggested. The ability of P. putida TMB to degrade these substrates was encoded by plasmid pGB (85 kilobase pairs), which showed considerable differences in size, restriction patterns, and DNA sequence from those of plasmid pWWO of strain PaW1.  相似文献   

6.
Biphasic systems can overcome the problem of low productivity in conventional media and have been exploited for biocatalysis. Solvent-tolerant microorganisms are useful in biotransformation with whole cells in biphasic reactions. A solvent-tolerant desulfurizing bacterium, Pseudomonas putida A4, was constructed by introducing the biodesulfurizing gene cluster dszABCD, which was from Rhodococcus erythropolis XP, into the solvent-tolerant strain P. putida Idaho. Biphasic reactions were performed to investigate the desulfurization of various sulfur-containing heterocyclic compounds in the presence of various organic solvents. P. putida A4 had the same substrate range as R. erythropolis XP and could degrade dibenzothiophene at a specific rate of 1.29 mM g (dry weight) of cells(-1) h(-1) for the first 2 h in the presence of 10% (vol/vol) p-xylene. P. putida A4 was also able to degrade dibenzothiophene in the presence of many other organic solvents at a concentration of 10% (vol/vol). This study is a significant step in the exploration of the biotechnological potential of novel biocatalysts for developing an efficient biodesulfurization process in biphasic reaction mixtures containing toxic organic solvents.  相似文献   

7.
Pseudomonas putida BG1 was isolated from soil by enrichment with p-toluate and selection for growth with p-xylene. Other hydrocarbons that served as growth substrates were toluene, m-xylene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The enzymes responsible for growth on these substrates are encoded by a large plasmid with properties similar to those of TOL plasmids isolated from other strains of Pseudomonas. Treatment of P. putida BG1 with nitrosoguanidine led to the isolation of a mutant strain which, when grown with fructose, oxidized both p-xylene and p-toluate to (-)-cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylic acid (cis-p-toluate diol). The structure of the diol was determined by conventional chemical techniques including identification of the products formed by acid-catalyzed dehydration and characterization of a methyl ester derivative. The cis-relative stereochemistry of the hydroxyl groups was determined by the isolation and characterization of an isopropylidene derivative. p-Xylene-grown cells contained an inducible NAD+-dependent dehydrogenase which formed catechols from cis-p-toluate diol and the analogous acid diols formed from the other hydrocarbon substrates listed above. The catechols were converted to meta ring fission products by an inducible catechol-2,3-dioxygenase which was partially purified from p-xylene-grown cells of P. putida BG1.  相似文献   

8.
Pseudomonas putida T-57 was isolated from an activated sludge sample after enrichment on mineral salts basal medium with toluene as a sole source of carbon. P. putida T-57 utilizes n-butanol, toluene, styrene, m-xylene, ethylbenzene, n-hexane, and propylbenzene as growth substrates. The strain was able to grow on toluene when liquid toluene was added to mineral salts basal medium at 10-90% (v/v), and was tolerant to organic solvents whose log P(ow) (1-octanol/water partition coefficient) was higher than 2.5. Enzymatic and genetic analysis revealed that P. putida T-57 used the toluene dioxygenase pathway to catabolize toluene. A cis-toluene dihydrodiol dehydrogenase gene (todD) mutant of T-57 was constructed using a gene replacement technique. The todD mutant accumulated o-cresol (maximum 1.7 g/L in the aqueous phase) when cultivated in minimal salts basal medium supplemented with 3% (v/v) toluene and 7% (v/v) 1-octanol. Thus, T-57 is thought to be a good candidate host strain for bioconversion of hydrophobic substrates in two-phase (organic-aqueous) systems.  相似文献   

9.
The upper operon of the TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes involved in the conversion of toluene and xylenes to their carboxylic acid derivatives. The last gene of the upper operon, xylN, encodes a 465-amino-acid polypeptide which exhibits significant sequence similarity to FadL, an outer membrane protein involved in fatty acid transport in Escherichia coli. To analyze the role of the xylN gene product, xylN on TOL plasmid pWW0 was disrupted by inserting a kanamycin resistance gene, and the phenotypes of P. putida harboring the wild-type and xylN mutant TOL plasmids were characterized. The growth of P. putida harboring the wild-type TOL plasmid was inhibited by a high concentration of m-xylene, while that of P. putida harboring the xylN mutant TOL plasmid was not. The apparent K(s) value for the oxidation of m-xylene in intact cells of the xylN mutant was fourfold higher than that of the wild-type strain, although the TOL catabolic enzyme activities in cell extracts from the two strains were almost identical. We therefore presume that the xylN gene product is a porin involved in the transport of m-xylene and its analogues across the outer membrane. Western blot analysis confirmed the localization of XylN in the outer membrane.  相似文献   

10.
Pseudomonas Pxy was isolated on p-xylene as sole source of carbon and energy. Substrates that supported growth were toluene, p-methylbenzyl alcohol, p-tolualdehyde, p-toluic acid, and the analogous m-methyl derivatives, including m-xylene. Cell extracts prepared from Pseudomonas Pxy after growth with either p-xylene or m-xylene oxidized the p- and m-isomers of tolualdehyde as well as p-methylbenzyl alcohol. The same cell extracts also catalyzed a "meta" fission of both 3- and 4-methylcatechol. Treatment of Pseudomonas Pxy with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of two mutant strains. Pseudomonas Pxy-40, when grown on succinate in the presence of p-xylene, accumulated p-toluic acid in the culture medium. Under the same conditions Pseudomonas Pxy-82 accumulated p-toluic acid and also 4-methylcatechol. When Pseudomonas Pxy-82 was grown on succinate in the presence of m-xylene, 3-methylcatechol and 3-methylsalicylic acid were excreted into the culture medium. A pathway is proposed for the initial reactions utilized by Pseudomonas Pxy to oxidize p- and m-xylene.  相似文献   

11.
J Y Lee  K H Jung  S H Choi    H S Kim 《Applied microbiology》1995,61(6):2211-2217
Construction of a hybrid strain which is capable of mineralizing components of a benzene, toluene, and p-xylene mixture simultaneously was attempted by redesigning the metabolic pathway of Pseudomonas putida. Genetic and biochemical analyses of the tod and the tol pathways revealed that dihydrodiols formed from benzene, toluene, and p-xylene by toluene dioxygenase in the tod pathway could be channeled into the tol pathway by the action of cis-p-toluate-dihydrodiol dehydrogenase, leading to complete mineralization of a benzene, toluene, and p-xylene mixture. Consequently, a hybrid strain was constructed by cloning todC1C2BA genes encoding toluene dioxygenase on RSF1010 and introducing the resulting plasmid into P. putida mt-2. The hybrid strain of P. putida TB105 was found to mineralize a benzene, toluene, and p-xylene mixture without accumulation of any metabolic intermediate.  相似文献   

12.
Pseudomonas putida mt-2 carries a plasmid (TOL, pWWO) which codes for a single set of enzymes responsible for the catabolism of toluene and m- and p-xylene to central metabolites by way of benzoate and m- and p-toluate, respectively, and subsequently by a meta cleavage pathway. Characterization of strains with mutations in structural genes of this pathway demonstrates that the inducers of the enzymes responsible for further degradation of m-toluate include m-xylene, m-methylbenzyl alcohol, and m-toluate, whereas the inducers of the enzymes responsible for oxidation of m-xylene to m-toluate include m-xylene and m-methylbenzyl alcohol but not m-toluate. A regulatory mutant is described in which m-xylene and m-methylbenzyl alcohol no longer induce any of the pathway enzymes, but m-toluate is still able to induce the enzymes responsible for its own degradation. Among revertants of this mutant are some strains in which all the enzymes are expressed constitutively and are not further induced by m-xylene. A model is proposed for the regulation of the pathway in which the enzymes are in two regulatory blocks, which are under the control of two regulator gene products. The model is essentially the same as proposed earlier for the regulation of the isofunctional pathway on the TOL20 plasmid from P. putida MT20.  相似文献   

13.
Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers-polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.  相似文献   

14.
The solvent-tolerant strain Pseudomonas putida DOT-T1E was grown in batch fermentations in a 5-liter bioreactor in the presence and absence of 10% (vol/vol) of the organic solvent 1-decanol. The growth behavior and cellular energetics, such as the cellular ATP content and the energy charge, as well as the cell surface hydrophobicity and charge, were measured in cells growing in the presence and absence of 1-decanol. Although the cells growing in the presence of 1-decanol showed an about 10% reduced growth rate and a 48% reduced growth yield, no significant differences were measured either in the ATP and potassium contents or in the energy charge, indicating that the cells adapted completely at the levels of membrane permeability and energetics. Although the bacteria needed additional energy for adaptation to the presence of the solvent, they were able to maintain or activate electron transport phosphorylation, allowing homeostasis of the ATP level and energy charge in the presence of the solvent, at the price of a reduced growth yield. On the other hand, significantly enhanced cell hydrophobicities and more negative cell surface charges were observed in cells grown in the presence of 1-decanol. Both reactions occurred within about 10 min after the addition of the solvent and were significantly different after killing of the cells with toxic concentrations of HgCl2. This adaptation of the surface properties of the bacterium to the presence of solvents seems to be very similar to previously observed reactions on the level of lipopolysaccharides, with which bacteria adapt to environmental stresses, such as heat shock, antibiotics, or low oxygen content. The results give clear physiological indications that the process with P. putida DOT-T1E as the biocatalyst and 1-decanol as the solvent is a stable system for two-phase biotransformations that will allow the production of fine chemicals in economically sound amounts.  相似文献   

15.
A hybrid metabolic pathway through which benzene, toluene, and p-xylene (BTX) mixture could be simultaneously mineralized was previously constructed in Pseudomonas putida TB101 (Lee, Roh, Kim, Biotechnol. Bioeng 43: 1146-1152, 1994). In this work, we improved the performance of the hybrid pathway by cloning the todC1C2BA genes in the broad-host-range multicopy vector RSF1010 and by introducing the resulting plasmid pTOL037 into P. putida mt-2 which harbors the archetypal TOL plasmid. As a result, a new hybrid strain, P. putida TB103, possessing the enhanced activity of toluene dioxygenase in the hybrid pathway was constructed. The degradation rates of benzene, toluene, and p-xylene by P. putida TB103 were increased by about 9.3-, 3.7-, and 1.4-fold, respectively, compared with those by previously constructed P. putida TB101. Apparently, this improved capability of P. putida TB103 for the degradation of BTX mixture resulted from the amplification of the todC1C2BA genes. Furthermore, a relatively long lag period for benzene degradation observed when P. putida TB101 was used for the degradation of BTX mixture at low dissolved oxygen (DO) tension disappeared when P. putida TB103 was employed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C120) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C230) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.  相似文献   

17.
Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logP(ow) (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of > or =2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We tested P. putida DOT-T1E tolerance to different aliphatic alcohols with a logP(ow) value between 2 and 4, such as decanol, nonanol, and octanol, which are potentially useful in biotransformations in double-phase systems in which compounds with a logP(ow) around 1.5 are produced. P. putida DOT-T1E responds to aliphatic alcohols as the second phase through cis-to-trans isomerization of unsaturated cis fatty acids and through efflux of these aliphatic alcohols via a series of pumps that also extrude aromatic hydrocarbons. These defense mechanisms allow P. putida DOT-T1E to survive well in the presence of high concentrations of the aliphatic alcohols, and growth with nonanol or decanol occurred at a high rate, whereas in the presence of an octanol double-phase growth was compromised. Our results support that the logP(ow) of aliphatic alcohols correlates with their toxic effects, as octanol (logP(ow) = 2.9) has more negative effects in P. putida cells than 1-nonanol (logP(ow) = 3.4) or 1-decanol (logP(ow) = 4). A P. putida DOT-T1E derivative bearing plasmid pWW0-xylE::Km transforms m-xylene (logP(ow) = 3.2) into 3-methylcatechol (logP(ow) = 1.8). The amount of 3-methylcatechol produced in an aliphatic alcohol/water bioreactor was 10- to 20-fold higher than in an aqueous medium, demonstrating the usefulness of double-phase systems for this particular biotransformation.  相似文献   

18.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight] h). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

19.
Separate continuous cultures of Pseudomonas putida R5-3, grown on toluene, and Pseudomonas alcaligenes C-O, grown on benzoate, were concentrated and continuously amalgamated on a ceramic bead column, which was subjected to a continuous stream of chlorobenzene vapors. A recombinant strain, P. putida CB1-9, was isolated in less than 1 month. P. alcaligenes C-0 grew on benzoate and 3-chlorobenzoate but not on toluene, P. putida R5-3 grew on benzoate and toluene but not on 3-chlorobenzoate, and neither strain grew on chlorobenzene or 1,4-dichlorobenzene; however, the recombinant P. putida CB1-9 grew on all of these substrates. Chlorobenzene-utilizing strains were not found in continuous cultures run at the lowest growth rate (0.05/h) or in the absence of the donor strain, P. alcaligenes C-0. Chloride was released in stoichiometric amounts when P. putida CB1-9 was grown on either chlorobenzene or 1,4-dichlorobenzene. The recombinant strain was related to P. putida R5-3, phenotypically and genetically. Restriction enzyme digests of the single 57-kilobase (kb) plasmid in R5-3 and of the single 33-kb plasmid in CB1-9 were similar, but also indicated rearrangement of plasmid DNA. Coincidental or causal to the loss of the 24-kb fragment was the observation that the recombinant--unlike its parent, R5-3--did not grow on xylenes or methylbenzoates. Although both ortho-pyrocatechase (OP) and meta-pyrocatechase (MP) were found in CB1-9 and R5-3, MP activity was 20- to 50-fold higher in R5-3 cells grown on 4-methylbenzoate than in the same cells grown on benzene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Separate continuous cultures of Pseudomonas putida R5-3, grown on toluene, and Pseudomonas alcaligenes C-O, grown on benzoate, were concentrated and continuously amalgamated on a ceramic bead column, which was subjected to a continuous stream of chlorobenzene vapors. A recombinant strain, P. putida CB1-9, was isolated in less than 1 month. P. alcaligenes C-0 grew on benzoate and 3-chlorobenzoate but not on toluene, P. putida R5-3 grew on benzoate and toluene but not on 3-chlorobenzoate, and neither strain grew on chlorobenzene or 1,4-dichlorobenzene; however, the recombinant P. putida CB1-9 grew on all of these substrates. Chlorobenzene-utilizing strains were not found in continuous cultures run at the lowest growth rate (0.05/h) or in the absence of the donor strain, P. alcaligenes C-0. Chloride was released in stoichiometric amounts when P. putida CB1-9 was grown on either chlorobenzene or 1,4-dichlorobenzene. The recombinant strain was related to P. putida R5-3, phenotypically and genetically. Restriction enzyme digests of the single 57-kilobase (kb) plasmid in R5-3 and of the single 33-kb plasmid in CB1-9 were similar, but also indicated rearrangement of plasmid DNA. Coincidental or causal to the loss of the 24-kb fragment was the observation that the recombinant--unlike its parent, R5-3--did not grow on xylenes or methylbenzoates. Although both ortho-pyrocatechase (OP) and meta-pyrocatechase (MP) were found in CB1-9 and R5-3, MP activity was 20- to 50-fold higher in R5-3 cells grown on 4-methylbenzoate than in the same cells grown on benzene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号