首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary transport of adenosine   总被引:2,自引:0,他引:2  
We tested the hypothesis that capillary exchange of adenosine is influenced by the ability of endothelial cells (ECs) to take up adenosine. Triple-indicator diffusion experiments were performed by injecting [14C]adenosine, [3H]9-beta-D-arabinofuranosylhypoxanthine ( [3H]araH), and radioiodinated serum albumin (RISA) into the arterial perfusate of isolated nonworking guinea pig hearts. Tracer appearance in venous effluent was observed over time. The early extraction of [14C]adenosine was much higher than that of [3H]araH. Extracted [3H]araH returned to the vascular space, but [14C]adenosine did not. Quantitative analysis of the curves by using a mathematical model indicates that approximately half of the extracted adenosine enters ECs and is metabolized. The remainder enters the interstitium and is taken up by myocytes, ECs, or other cells and is metabolized. We conclude that uptake of adenosine by ECs represents a significant influence on the capillary exchange of adenosine.  相似文献   

2.
Endothelial cell (EC) apoptosis is important in vascular injury, repair, and angiogenesis. Homocysteine and/or adenosine exposure of ECs causes apoptosis. Elevated homocysteine or adenosine occurs in disease states such as homocysteinuria and tissue necrosis, respectively. We examined the intracellular signaling mechanisms involved in this pathway of EC apoptosis. Inhibition of protein tyrosine phosphatase (PTPase) attenuated homocysteine- and/or adenosine-induced apoptosis and completely blocked apoptosis induced by the inhibition of S-adenosylhomocysteine hydrolase with MDL-28842. Consistent with this finding, the tyrosine kinase inhibitor genistein enhanced apoptosis in adenosine-treated ECs. Adenosine significantly elevated the PTPase activity in the ECs. Mitogen-activated protein kinase activities were examined to identify possible downstream targets for the upregulated PTPase(s). Extracellular signal-regulated kinase (ERK) 1 activity was slightly elevated in adenosine-treated ECs, whereas ERK2, c-Jun NH(2)-terminal kinase-1, or p38beta activities differed little. The mitogen-activated protein kinase-1 inhibitor PD-98059 enhanced DNA fragmentation, suggesting that increased ERK1 activity is a result but not a cause of apoptosis in adenosine-treated ECs. Adenosine-treated ECs had diminished p38alpha activity compared with control cells; this effect was blunted on PTPase inhibition. These results indicate that PTPase(s) plays an integral role in the induction of EC apoptosis upon exposure to homocysteine and/or adenosine, possibly by the attenuation of p38alpha activity.  相似文献   

3.
Epithelial properties of brain capillary endothelium   总被引:2,自引:0,他引:2  
A L Betz 《Federation proceedings》1985,44(10):2614-2615
The specialized endothelial cells (ECs) in brain capillaries provide a blood-brain barrier to some solutes while facilitating transcapillary exchange of other solutes. In addition, brain capillaries may contribute to the secretion of spinal fluid, a process that is typically mediated by epithelial cells. This proposal is supported by the many epithelial properties of brain capillary ECs including the presence of 1) continuous tight junctions, 2) low transcellular permeability, 3) transcellular concentration gradients, 4) a transcellular potential difference, 5) a high transcellular resistance, and 6) an asymmetrical distribution of transport systems between the luminal and antiluminal plasma membranes. Thus, the brain capillary contains ECs that are structurally and perhaps functionally related to an epithelial cell. These unique features of brain ECs undoubtedly play an important role in regulating the formation and composition of the brain's interstitial fluid.  相似文献   

4.
Endothelial cells (ECs) from different vascular beds not only display common characteristics but are also quite heterogeneous in terms of expression and secretion of neuro-angiogenic factors, which may help explain some of their distinct physiological roles. We investigated by RT-PCR the gene expression, by PC12 bioassay the neurotropic activity, and by ELISAs the levels of NGF and FGF-2 using conditioned medium collected from cultures of ECs derived from myocardial and cerebral capillaries. While NGF was expressed and released by both cell types, FGF-2 was expressed and released solely by the brain but not heart ECs. Oxygen-glucose deprivation (ischemic) insult blocked NGF secretion from heart and brain ECs and inhibited by 70% the secretion of FGF-2 from brain ECs. We propose that the differential expression of NGF and FGF-2 in heart and brain EC cultures reflect heterogeneity on demand of the microcapillary components and the surrounding microenvironment for a proper tissue-specific homeostasis.  相似文献   

5.
Intracellular Ca2+ transients were identified in endothelial cells (ECs) in intact blood-perfused arterioles. ECs in cremaster muscle arterioles (diameter approximately 45 microm) in anesthetized mice were loaded with the Ca2+ indicator fluo 4-AM by intraluminal perfusion, after which blood flow was reestablished. Confocal microscopy was used to visualize Ca2+ as a function of fluo-4 intensity in real time. Separate sets of experiments were performed under the following conditions: control, ischemia, during inhibition of P(2x) or P(1) purinoreceptors, and with the application of exogenous adenosine. In controls, spontaneous EC Ca2+ transients displayed a wide range of activity frequency (1-32 events/min) and about one-third of these transient events were synchronized between adjacent ECs. The increase in Ca2+ remained localized and did not spread to encompass the entire cell body. Ca2+ transient activity decreased significantly with ischemia (from 9.9 +/- 0.6 to 3.1 +/- 0.3 events/min, n = 135) but was unaffected by P(2x) or P(1) receptor inhibition. Exogenous adenosine significantly increased the frequency of Ca2+ transients (to 12.8 +/- 0.9 events/min) and increased synchronization so that 50% of all Ca2+ events were synchronized between ECs. This response to adenosine was not due to an increase in shear stress. These data indicate that localized Ca2+ transients are sensitive to flow conditions and, separately, to metabolically active pathways (exogenous adenosine), although the basal activity occurs independently of P(2x) or P(1) receptors. These transients may represent a mechanism by which individual EC responses are integrated to result in coordinated arteriolar responses in situ.  相似文献   

6.
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.  相似文献   

7.
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.  相似文献   

8.
We have found that when the ATP hydrolysis activity of beef heart mitochondrial adenosine triphosphatase (F1) is eliminated by either cold treatment or chemical modification, the enzyme attains the ability to catalyze the Pi in equilibrium ATP exchange reaction. The ATP hydrolysis activity of isolated F1 was lost upon chemical modification by phenyglyoxal, butanedione, or 7-chloro-4-nitrobenzene-2-oxa-1,3-diazole. The F1 thus chemically modified was able to catalyze an ADP-dependent Pi in equilibrium ATP exchange reaction. In addition F1 that had been cold-treated to eliminate ATP hydrolysis activity, also catalyzed the Pi in equilibrium ATP exchange reaction. The Pi in equilibrium ATP exchange catalyzed by modified F1 was shown to be totally inhibited by the F1-specific antibiotic efrapeptin. We have previously shown that isolated beef heart mitochondrial ATPase will catalyze the formation of a transition state analog of the ATP synthesis reaction (Bossard, M. J., Vik, T. A., and Schuster, S. M. (1980) J. Biol. Chem. 255, 5342-5346). While the F1-catalyzed ATP hydrolysis activity was lost rapidly upon chemical modification or cold treatment, the ability of the enzyme to produce Pi . adenosine 5'-diphosphate (chromium(III) salt) from phosphate and monodentate adenosine 5'-diphosphate (chromium(III) salt) was unimpaired. The implications of these data with regard to the mechanism of ATP synthesis are discussed.  相似文献   

9.
Li XW  Wang H 《Life sciences》2006,78(16):1863-1870
Alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) is widely expressed in the central and peripheral nervous systems, and is also found in several non-neuronal tissues, such as endothelial cells (ECs), bronchial epithelial cells, skin keratinocytes and vascular smooth muscle cells. Recent evidence suggests that alpha7 nAChR is involved in angiogenesis. Here, we investigated the feasibility of alpha7 nAChR for revascularization in ischemic heart disease. RT-PCR and immunohistochemistry were used to examine the expression of alpha7 nAChR in human umbilical vein endothelial cell (HUVECs). The cellular function was examined using MTT, fluorescence confocal microscopy and angiogenesis assay in vitro. The capillary density in the rat model of myocardial infarction (MI) was investigated using immunohistochemistry. The results showed that alpha7 nAChR agonists choline increased the expression of alpha7 nAChR mRNA and protein, the intracellular Ca 2+ concentration, proliferation and tube formation of ECs. Reverse effects were observed by using alpha7 nAChR antagonist alpha-BTX. Furthermore, in the rat model of MI, alpha7 nAChR agonist enhanced the capillary density in ischemic tissues, whereas antagonist mecamylamine and alpha-BTX inhibited the effect. Our results suggest that alpha7 nAChR is involved in the regulation of cellular function in ECs, and capillary formation in MI, which are the important steps of angiogenesis. Therefore, alpha7 nAChR on ECs may be a new endothelium target for revascularization in therapeutic angiogenesis of ischemic heart disease.  相似文献   

10.
Swelling of pig red cells leads to an increase in a chloride-dependent K flux which can be potentiated by cAMP, whereas cell shrinking causes a selective increase in Na movement which is mediated by a Na/H exchanger. We examined the influence of adenosine and adenosine receptor agonists on the volume-sensitive, ouabain-resistant, chloride-dependent K flux, referred to as Rb flux and volume-activated Na/H exchange pathway. It was found that adenosine and adenosine receptor agonists inhibited the Rb flux. N6-cyclohexyl adenosine (CHA) has been found to be the most potent inhibitor with EC50 of approximately 4.5 microM followed by 2-chloroadenosine (Cl-ado) with EC50 of approximately 27 microM and 5'-(N-ethyl)-carboxamido-adenosine (NECA) with EC50 of approximately 185 microM. CHA also inhibits the cAMP-stimulated Rb flux. However, CHA does not alter the basal intracellular cAMP level nor the intracellular cAMP content raised by exogenously added cAMP. In contrast to the adenosine agonist action on the Rb flux, Na/H exchange, which is activated upon cell shrinkage, exhibits a slight stimulation in response to CHA. These findings suggest that the presence of A1 adenosine receptors on the surface of red cells influences the regulation of volume-activated ion transport.  相似文献   

11.
Endothelial cell lineages of the heart   总被引:1,自引:0,他引:1  
During early gastrulation, vertebrate embryos begin to produce endothelial cells (ECs) from the mesoderm. ECs first form primitive vascular plexus de novo and later differentiate into arterial, venous, capillary, and lymphatic ECs. In the heart, the five distinct EC types (endocardial, coronary arterial, venous, capillary, and lymphatic) have distinct phenotypes. For example, coronary ECs establish a typical vessel network throughout the myocardium, whereas endocardial ECs form a large epithelial sheet with no angiogenic sprouting into the myocardium. Neither coronary arteries, veins, and capillaries, nor lymphatic vessels fuse with the endocardium or open to the heart chamber. The developmental stage during which the specific phenotype of each cardiac EC type is determined remains unclear. The mechanisms involved in EC commitment and diversity can however be more precisely defined by tracking the migratory patterns and lineage decisions of the precursors of cardiac ECs. Work carried out by the authors is supported in part by the NIH.  相似文献   

12.
The pulmonary endothelial surface   总被引:2,自引:0,他引:2  
The understanding of endothelial metabolic properties has increased dramatically in recent years. Endothelial cells (ECs) process hormones, drugs, and many blood-borne substances by means of enzymes and transport processes. In turn, some hormones, blood cells, and cellular products interact with ECs via specific receptors on the luminal surface. Functional complexity is exemplified by the metabolism of the adenine nucleotides. ATP, ADP, and AMP are metabolized by enzymes of the endothelial surface to release adenosine, which may be immediately taken up into endothelium and reincorporated intracellularly into nucleotides. Equally complex is the metabolism of the kinins and angiotensins by ECs. Bradykinin is inactivated whereas angiotensin I is converted to angiotensin II. Bradykinin not thus degraded can act on endothelial receptors and stimulate the release of prostacyclin (PGI2). Thus bradykinin can amplify the release of another vasodilator, PGI2, and can stimulate the release of a powerful antiaggregatory agent (PGI2). Many of these complex metabolic reactions occur at the endothelial surface, a structure that is itself complex. ECs possess endothelial projections and caveolae as well as a fuzzy coat, or glycocalyx. Functions of the endothelial glycocalyx are not well understood, but the glycocalyx can now be visualized: it may act as a molecular sieve and provide a substratum for the initiation and progression of immunologic reactions.  相似文献   

13.
The present study determined whether AMP-activated protein kinase (AMPK) regulates heme oxygenase (HO)-1 gene expression in endothelial cells (ECs) and if HO-1 contributes to the biological actions of this kinase. Treatment of human ECs with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) stimulated a concentration- and time-dependent increase in HO-1 protein and mRNA expression that was associated with a prominent increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) protein. Induction of HO-1 was also observed in rat carotid arteries after the in vivo application of AICAR. Induction of HO-1 by AICAR was blocked by the AMPK inhibitor compound C, the adenosine kinase inhibitor 5'-iodotubercidin, and by silencing AMPK-α(1/2) and was mimicked by the AMPK activator A-769662 and by infecting ECs with an adenovirus expressing constitutively active AMPK-α(1). AICAR also induced a significant rise in HO-1 promoter activity that was abolished by mutating the antioxidant responsive elements of the HO-1 promoter or by the overexpression of dominant negative Nrf2. Finally, activation of AMPK inhibited cytokine-mediated EC death, and this was prevented by the HO inhibitor tin protoporphyrin-IX or by silencing HO-1 expression. In conclusion, AMPK stimulates HO-1 gene expression in human ECs via the Nrf2/antioxidant responsive element signaling pathway. The induction of HO-1 mediates the antiapoptotic effect of AMPK, and this may provide an important adaptive response to preserve EC viability during periods of metabolic stress.  相似文献   

14.
Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef-) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef- replication in CD4(+)-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef- replication and facilitate enhanced wild-type replication in naive T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef- in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.  相似文献   

15.
To elucidate the effects of endothelium-derived relaxing factor (EDRF) released from vascular endothelial cells (ECs) on handling of intracellular calcium ion (Ca2+i) in ECs themselves and vascular smooth muscle cells (VSMCs), we measured the Ca2+i by two-dimensional digital image analysis of fura-2-loaded ECs and VSMCs in tissue culture. In isoculture of one cell type, adenosine triphosphate (ATP, 1 microM) transiently increased the Ca2+i of both ECs and VSMCs. High-K+ depolarization or angiotensin II also elevated the Ca2+i of VSMCs, whereas neither stimulants changed the Ca2+i of ECs. In coculture of ECs with VSMCs, the same dose of ATP rapidly increased the Ca2+i of ECs and then transiently decreased the Ca2+i of VSMCs to below the resting level. The maximal Ca2+i-modulating effects of ATP on both cell types were reproducible after the second application of ATP. Three kinds of EDRF blockers (L-NG-monomethylarginine, methemoglobin, or methylene blue) potentiated the ATP-induced Ca2+i rise in ECs and attenuated the Ca2+i reduction in VSMCs, suggesting the autocrine and paracrine effects of EDRF on ECs and VSMCs, respectively. However, neither indomethacin, superoxide dismutase, nor neutralizing monoclonal antibody to endothelin-1 altered the second responses. Thus, two-dimensional Ca2+i image analysis of ECs and VSMCs in coculture enabled direct visualization of the EDRF actions in ECs and VSMCs and their modifications.  相似文献   

16.
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that is known to modulate various aspects of endothelial cell (EC) biology. Retinal pigment epithelium (RPE) is important for regulating angiogenesis of choriocapillaris and one of the main cell sources of TGF-β secretion, particularly TGF-β2. However, it is largely unclear whether and how TGF-β2 affects angiogenic responses of ECs. In the current study, we demonstrated that TGF-β2 reduces vascular endothelial growth factor receptor-2 (VEGFR-2) expression in ECs and thereby inhibits vascular endothelial growth factor (VEGF) signaling and VEGF-induced angiogenic responses such as EC migration and tube formation. We also demonstrated that the reduction of VEGFR-2 expression by TGF-β2 is due to the suppression of JNK signaling. In coculture of RPE cells and ECs, RPE cells decreased VEGFR-2 levels in ECs and EC migration. In addition, we showed that TGF-β2 derived from RPE cells is involved in the reduction of VEGFR-2 expression and inhibition of EC migration. These results suggest that TGF-β2 plays an important role in inhibiting the angiogenic responses of ECs during the interaction between RPE cells and ECs and that angiogenic responses of ECs may be amplified by a decrease in TGF-β2 expression in RPE cells under pathologic conditions.  相似文献   

17.
We studied the effect of adenosine on Na+/Ca2+ exchange activity in ewe heart ventricular sarcolemmal vesicles. Adenosine was found to stimulate Na+/Ca2+ exchange activity in a dose-dependent manner from 0.1 nM to 10 microM, with maximal stimulation (40%) at 0.1 microM adenosine. The Vmax of Na+/Ca2+ exchange was increased, but the Km for Ca2+ was not altered. The effect of adenosine was specific since 1 microM adenine, inosine, and guanosine led to less than 15% stimulation, and adenosine diphosphate had no effect. Caffeine antagonized the activation of Na+/Ca2+ exchange by adenosine, and the order of potency of adenosine analogs was N6-(L-2-phenylisopropyl)adenosine = N6-cyclohexyladenosine = 5'-(N- ethylcarboxamido)adenosine much greater than N6-(D-2-phenylisopropyl)adenosine, indicating the involvement of A1 subclass receptors. The effect of adenosine was mimicked by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and blocked by pertussis toxin treatment. Taken together, these results suggest that A1 subclass receptors coupled to a pertussis toxin-sensitive G protein mediate the activation of Na+/Ca2+ exchange activity by adenosine. We conclude that the negative inotropic effect of adenosine in ventricular muscle, antagonistic toward cyclic AMP, may involve activation of Na+/Ca2+ exchange.  相似文献   

18.
Rapid kinetic techniques were applied to determine the effect of transport inhibitors on the transport and metabolism of adenosine in human red cells. Dipyridamole inhibited the equilibrium exchange of 500 microM adenosine by deoxycoformycin-treated cells in a similar concentration dependent manner as the equilibrium exchange and zero-trans influx of uridine with 50% inhibition being observed at about 20 nM. Intracellular phosphorylation of adenosine at an extracellular concentration of 5 microM was inhibited only by dipyridamole concentrations greater than or equal to 100 nM, which inhibited transport about 95%. Lower concentrations of dipyridamole actually stimulated adenosine phosphorylation, because the reduced influx of adenosine lessened substrate inhibition of adenosine kinase. When the cells were not treated with deoxycoformycin, greater than 95% of the adenosine entering the cells at a concentration of 100 microM became deaminated. A 95-98% inhibition of adenosine transport by treatment with dipyridamole, dilazep, or nitrobenzylthioinosine inhibited its deamination practically completely, whereas adenosine phosphorylation was inhibited only 50-85%. Whether adenosine entering the cells is phosphorylated or deaminated is strictly based on the kinetic properties of the responsible enzymes, substrate inhibition of adenosine kinase, and the absolute intracellular steady state concentration of adenosine attained. The latter approaches the extracellular concentration of adenosine, since transport is not rate limiting, except when modulated by transport inhibitors. In spite of the extensive adenosine deamination in cells incubated with 100 microM adenosine, little IMP accumulated intracellularly when the medium phosphate concentration was 1 mM, but IMP formation increased progressively with increase in phosphate concentration to 80 mM. The intracellular phosphoribosylation of adenine and hypoxanthine were similarly dependent on phosphate concentration. The results indicate that adenosine is the main purine source for erythrocytes and is very efficiently taken up and converted to nucleotides under physiological conditions, whereas hypoxanthine and adenine are not significantly salvaged. Hypoxanthine resulting from nucleotide turnover in these cells is expected to be primarily released from the cells. Adenosine was also dephosphorylated in human red cells presumably by 5'-methylthioadenosine phosphorylase, but this reaction seems without physiological significance as it occurs only at high adenosine and phosphate concentrations and if deamination is inhibited.  相似文献   

19.
Endothelial cells (ECs) not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid, macromolecules and cells, but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction. Recently, with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus, a lot of mechanosensing molecules (mechanosensors) and pathways have been identified in ECs. In addition, there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers, but also contribute to the pathogenesis of various vascular disorders. This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.  相似文献   

20.
IL-17 is a signature cytokine of Th17 cells, a recently described subset of effector CD4 T cells implicated in the development of several pathologies. We have examined the role of IL-17 in regulating endothelial NO synthase (eNOS) expression in human vascular endothelial cells (ECs) because of the key role of eNOS in determining the pathological outcome of immune-mediated vascular diseases. In cultured ECs, IL-17 increased expression of eNOS, eNOS phosphorylation at Ser(1177), and NO production. The induction of eNOS expression by IL-17 was prevented by the pharmacological inhibition of NF-κB, MEK, and JNK, as well as by small interfering RNA-mediated gene silencing of these signaling pathways. The expression of IL-17 was then examined by immunohistochemistry in human arteries affected by transplant vasculopathy (TV), a vascular condition that is a leading reflection of chronic heart transplant rejection. IL-17 was expressed by infiltrating leukocytes in the intima of arteries with TV, and the majority of IL-17-positive cells were T cells. The number of IL-17-positive cells was not correlated with the intima/media ratio, but was negatively correlated with the amount of luminal occlusion. There was also a significant positive correlation between the number of IL-17-positive cells and the density of eNOS-expressing luminal ECs in arteries with TV. Altogether, these findings show that IL-17 induces the expression of eNOS in human ECs and that this may facilitate outward expansion of arteries afflicted with TV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号